16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamic Effects of Early Adolescent Stress on Depressive-Like Behaviors and Expression of Cytokines and JMJD3 in the Prefrontal Cortex and Hippocampus of Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aims: Expression of inflammatory cytokines in the brain has been reported to be involved in the pathogenesis of and susceptibility to depression. Jumonji domain-containing 3 (Jmjd3), which is a histone H3 lysine 27 (H3K27) demethylase and can regulate microglial activation, has been regarded as a crucial element in the expression of inflammatory cytokines. Furthermore, recent studies highlighted the fact that lipopolysaccharides induce depressive-like behaviors and higher Jmjd3 expression and lower H3K27me3 expression in the brain. However, whether the process of Jmjd3 mediating inflammatory cytokines was involved in the susceptibility to depression due to early-life stress remained elusive.

          Methods: Rats exposed to chronic unpredictable mild stress (CUMS) in adolescence were used in order to detect dynamic alterations in depressive-like behaviors and expression of cytokines, Jmjd3, and H3K27me3 in the prefrontal cortex and hippocampus. Moreover, minocycline, an inhibitor of microglial activation, was employed to observe the protective effects.

          Results: Our results showed that CUMS during the adolescent period induced depressive-like behaviors, over-expression of cytokines, and increased Jmjd3 and decreased H3K27me3 expression in the prefrontal cortex and hippocampus of both adolescent and adult rats. However, minocycline relieved all the alterations.

          Conclusion: The study revealed that Jmjd3 might be involved in the susceptibility to depressive-like behaviors by modulating H3K27me3 and pro-inflammatory cytokine expression in the prefrontal cortex and hippocampus of rats that had been stressed during early adolescence.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action.

          To better understand the molecular mechanisms of depression and antidepressant action, we administered chronic social defeat stress followed by chronic imipramine (a tricyclic antidepressant) to mice and studied adaptations at the levels of gene expression and chromatin remodeling of five brain-derived neurotrophic factor (Bdnf) splice variant mRNAs (I-V) and their unique promoters in the hippocampus. Defeat stress induced lasting downregulation of Bdnf transcripts III and IV and robustly increased repressive histone methylation at their corresponding promoters. Chronic imipramine reversed this downregulation and increased histone acetylation at these promoters. This hyperacetylation by chronic imipramine was associated with a selective downregulation of histone deacetylase (Hdac) 5. Furthermore, viral-mediated HDAC5 overexpression in the hippocampus blocked imipramine's ability to reverse depression-like behavior. These experiments underscore an important role for histone remodeling in the pathophysiology and treatment of depression and highlight the therapeutic potential for histone methylation and deacetylation inhibitors in depression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heterogeneity of Microglial Activation in the Innate Immune Response in the Brain

            The immune response in the brain has been widely investigated and while many studies have focused on the proinflammatory cytotoxic response, the brain’s innate immune system demonstrates significant heterogeneity. Microglia, like other tissue macrophages, participate in repair and resolution processes after infection or injury to restore normal tissue homeostasis. This review examines the mechanisms that lead to reduction of self-toxicity and to repair and restructuring of the damaged extracellular matrix in the brain. Part of the resolution process involves switching macrophage functional activation to include reduction of proinflammatory mediators, increased production and release of anti-inflammatory cytokines, and production of cytoactive factors involved in repair and reconstruction of the damaged brain. Two partially overlapping and complimentary functional macrophage states have been identified and are called alternative activation and acquired deactivation. The immunosuppressive and repair processes of each of these states and how alternative activation and acquired deactivation participate in chronic neuroinflammation in the brain are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis.

              The limited success in understanding the pathophysiology of major depression may result from excessive focus on the dysfunctioning of neurons, as compared with other types of brain cells. Therefore, we examined the role of dynamic alterations in microglia activation status in the development of chronic unpredictable stress (CUS)-induced depressive-like condition in rodents. We report that following an initial period (2-3 days) of stress-induced microglial proliferation and activation, some microglia underwent apoptosis, leading to reductions in their numbers within the hippocampus, but not in other brain regions, following 5 weeks of CUS exposure. At that time, microglia displayed reduced expression of activation markers as well as dystrophic morphology. Blockade of the initial stress-induced microglial activation by minocycline or by transgenic interleukin-1 receptor antagonist overexpression rescued the subsequent microglial apoptosis and decline, as well as the CUS-induced depressive-like behavior and suppressed neurogenesis. Similarly, the antidepressant drug imipramine blocked the initial stress-induced microglial activation as well as the CUS-induced microglial decline and depressive-like behavior. Treatment of CUS-exposed mice with either endotoxin, macrophage colony-stimulating factor or granulocyte-macrophage colony-stimulating factor, all of which stimulated hippocampal microglial proliferation, partially or completely reversed the depressive-like behavior and dramatically increased hippocampal neurogenesis, whereas treatment with imipramine or minocycline had minimal or no anti-depressive effects, respectively, in these mice. These findings provide direct causal evidence that disturbances in microglial functioning has an etiological role in chronic stress-induced depression, suggesting that microglia stimulators could serve as fast-acting anti-depressants in some forms of depressive and stress-related conditions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychiatry
                Front Psychiatry
                Front. Psychiatry
                Frontiers in Psychiatry
                Frontiers Media S.A.
                1664-0640
                11 October 2018
                2018
                : 9
                : 471
                Affiliations
                Department of Medical Psychology and Medical Ethics, Cheeloo College of Medicine, Shandong University , Jinan, China
                Author notes

                Edited by: Gianluca Serafini, Ospedale San Martino (IRCCS), Italy

                Reviewed by: Bianka Karshikoff, Stanford University School of Medicine, United States; Gislaine Zilli Reus, Universidade do Extremo Sul Catarinense, Brazil; Bhoomika M. Patel, Nirma University of Science and Technology, India

                *Correspondence: Fang Pan panfang@ 123456sdu.edu.cn

                This article was submitted to Mood and Anxiety Disorders, a section of the journal Frontiers in Psychiatry

                Article
                10.3389/fpsyt.2018.00471
                6193509
                30364220
                113a32a7-5d26-4296-acbb-695d9ab5dbee
                Copyright © 2018 Wang, Wang, Xu, Liu, Jiang and Pan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 June 2018
                : 10 September 2018
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 50, Pages: 13, Words: 9160
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 31371036
                Award ID: 31771220
                Categories
                Psychiatry
                Original Research

                Clinical Psychology & Psychiatry
                jumonji domain-containing 3,depression,early-life stress,h3k27me3,cytokine,adolescent,epigenetic

                Comments

                Comment on this article