36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immunohistochemical detection of high-mobility group box 1 correlates with resistance of preoperative chemoradiotherapy for lower rectal cancer: a retrospective study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          High-mobility group box 1 (HMGB1) is a nucleoprotein that is related to inflammation. It has been implicated in a variety of biologically important processes, including transcription, DNA repair, differentiation, development, and extracellular signaling. Recently, its important role in the process of tumor invasion, metastasis, and resistance to anti-cancer therapies has been demonstrated. In this study, we aimed to investigate the correlation of HMGB1 expression and resistance of rectal cancer patients to chemoradiotherapy (CRT) prior to curative operation.

          Methods

          We retrospectively reviewed the data of 75 lower rectal cancer patients without complete pathological response who had received preoperative CRT and had undergone curative resection at the University of Tokyo Hospital between May 2003 and June 2010. HMGB1 expression in surgically resected specimens was evaluated using immunohistochemical detection and specimens were classified into high or low HMGB1 expression groups. Clinicopathologic features, degree of tumor reduction, regression of tumor grade, and patient survival were compared between the groups using non-paired Student’s t-tests and Kaplan-Meier analysis.

          Results

          A total of 52 (69.3%) patients had high HMGB1 expression, and 23 (30.7%) had low expression. HMGB1 expression was significantly correlated with histologic type ( P = 0.02), lymphatic invasion ( P = 0.02), and venous invasion ( P = 0.05). Compared to patients with low HMGB1 expression, those with high expression had a poorer response to CRT, in terms of tumor reduction ratio (42.2 versus 28.9%, respectively; P <0.01) and post-CRT histological tumor regression grade (56.5 versus 30.8% grade 2; respectively; P = 0.03). However, no significant correlation was found between HMGB1 expression and recurrence-free and overall survival rates.

          Conclusions

          HMGB1 expression may be one of the key factors regulating the response of rectal cancer to preoperative CRT in terms of tumor invasiveness and resistance to therapy.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          HMG-1 as a late mediator of endotoxin lethality in mice.

          Endotoxin, a constituent of Gram-negative bacteria, stimulates macrophages to release large quantities of tumor necrosis factor (TNF) and interleukin-1 (IL-1), which can precipitate tissue injury and lethal shock (endotoxemia). Antagonists of TNF and IL-1 have shown limited efficacy in clinical trials, possibly because these cytokines are early mediators in pathogenesis. Here a potential late mediator of lethality is identified and characterized in a mouse model. High mobility group-1 (HMG-1) protein was found to be released by cultured macrophages more than 8 hours after stimulation with endotoxin, TNF, or IL-1. Mice showed increased serum levels of HMG-1 from 8 to 32 hours after endotoxin exposure. Delayed administration of antibodies to HMG-1 attenuated endotoxin lethality in mice, and administration of HMG-1 itself was lethal. Septic patients who succumbed to infection had increased serum HMG-1 levels, suggesting that this protein warrants investigation as a therapeutic target.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Colorectal cancer.

            Every year, more than 945000 people develop colorectal cancer worldwide, and around 492000 patients die. This form of cancer develops sporadically, in the setting of hereditary cancer syndromes, or on the basis of inflammatory bowel diseases. Screening and prevention programmes are available for all these causes and should be more widely publicised. The adenoma-carcinoma sequence is the basis for development of colorectal cancer, and the underlying molecular changes have largely been identified. Prognosis depends on factors related to the patient, treatment, and tumour, and the expertise of the treatment team is one of the major determinants of outcome. New information on the molecular basis of this cancer have led to the development of targeted therapeutic options, which are being tested in clinical trials. Further clinical progress will largely depend on the broader implementation of multidisciplinary treatment strategies following the principles of evidence-based medicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases.

              The receptor for advanced glycation end products (RAGE), a multi-ligand member of the immunoglobulin superfamily of cell surface molecules, interacts with distinct molecules implicated in homeostasis, development and inflammation, and certain diseases such as diabetes and Alzheimer's disease. Engagement of RAGE by a ligand triggers activation of key cell signalling pathways, such as p21ras, MAP kinases, NF-kappaB and cdc42/rac, thereby reprogramming cellular properties. RAGE is a central cell surface receptor for amphoterin, a polypeptide linked to outgrowth of cultured cortical neurons derived from developing brain. Indeed, the co-localization of RAGE and amphoterin at the leading edge of advancing neurites indicated their potential contribution to cellular migration, and in pathologies such as tumour invasion. Here we demonstrate that blockade of RAGE-amphoterin decreased growth and metastases of both implanted tumours and tumours developing spontaneously in susceptible mice. Inhibition of the RAGE-amphoterin interaction suppressed activation of p44/p42, p38 and SAP/JNK MAP kinases; molecular effector mechanisms importantly linked to tumour proliferation, invasion and expression of matrix metalloproteinases.
                Bookmark

                Author and article information

                Contributors
                hongokumiko-tky@umin.ac.jp
                kaz-tky@umin.ac.jp
                tsuno-tky@umin.ac.jp
                ISHIHARA-1SU@h.u-tokyo.ac.jp
                eijisunami@yahoo.co.jp
                kitayama-1SU@h.u-tokyo.ac.jp
                toshwatanabe@yahoo.co.jp
                Journal
                World J Surg Oncol
                World J Surg Oncol
                World Journal of Surgical Oncology
                BioMed Central (London )
                1477-7819
                27 January 2015
                27 January 2015
                2015
                : 13
                : 7
                Affiliations
                [ ]Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
                [ ]Department of Transfusion Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
                Article
                1917
                10.1186/1477-7819-13-7
                4417215
                25622595
                11742b8f-e043-4ec1-95e2-f0a591df2aca
                © Hongo et al.; licensee BioMed Central. 2015

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 30 August 2014
                : 18 November 2014
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Surgery
                high-mobility group box 1 (hmgb1),lower rectal cancer,chemoradiotherapy,immunohistochemistry

                Comments

                Comment on this article