1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TGR5 overexpression mediated by the inhibition of transcription factor SOX9 protects against hypoxia-/reoxygenation-induced injury in hippocampal neurons by activating Nrf2/ HO-1 signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cerebral ischemia/reperfusion (CI/R) injury is a destructive cerebrovascular disease associated with long-term disability and high mortality rates. TGR5 has been discovered in multiple human and animal tissues and to modulate a variety of physiological processes. The current study sought to reveal the function of TGR5 in CI/R injury and uncover the latent regulatory mechanism.

          Methods

          A hypoxia/reoxygenation (H/R) model was established in mouse hippocampal HT22 cells. The TGR5 expression in the H/R-treated HT22 cells was tested by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blots. After TGR5 was overexpressed, Cell Counting Kit-8 assays were used to estimate cell viability, and lactate dehydrogenase (LDH) release was assessed by a LDH assay kit. Cell apoptosis was measured by terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling assays. Cytochrome c release was detected by immunofluorescence assays and western blots were used to analyze the protein levels of apoptosis-related factors. The oxidative stress levels were assessed by corresponding kits. Next, SOX9 expression in the H/R-treated HT22 cells was tested by RT-qPCR and western blots. The interaction between the TGR5 promoter and SOX9 was verified by luciferase reporter and chromatin immunoprecipitation assays. Subsequently, after the H/R-treated HT22 cells had been co-transfected with TGR5 overexpression and SOX9 overexpression plasmids, TGR5 expression was tested by RT-qPCR and western blots, and the above-mentioned functional experiments were repeated. Finally, the expression of Nrf2/ HO-1 signaling-related proteins was examined by western blots.

          Results

          TGR5 expression was significantly decreased in the H/R-exposed HT22 cells. The elevation of TGR5 enhanced the viability, hindered the apoptosis, and alleviated the oxidative stress of the HT22 cells under H/R conditions. Additionally, SOX9 had a strong affinity with TGR5 promoter, and TGR5 was transcriptionally inhibited by SOX9. Further, SOX9 overexpression restored the protective role of TGR5 upregulation in H/R-induced HT22 cell injury. Additionally, TGR5 overexpression mediated by SOX9 inhibition activated Nrf2/ HO-1 signaling.

          Conclusions

          TGR5 was transcriptionally inhibited by SOX9, and the overexpression of TGR5 played a protective role in CI/R injury.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives

            Stroke is the second leading cause of death and a major contributor to disability worldwide. The prevalence of stroke is highest in developing countries, with ischemic stroke being the most common type. Considerable progress has been made in our understanding of the pathophysiology of stroke and the underlying mechanisms leading to ischemic insult. Stroke therapy primarily focuses on restoring blood flow to the brain and treating stroke-induced neurological damage. Lack of success in recent clinical trials has led to significant refinement of animal models, focus-driven study design and use of new technologies in stroke research. Simultaneously, despite progress in stroke management, post-stroke care exerts a substantial impact on families, the healthcare system and the economy. Improvements in pre-clinical and clinical care are likely to underpin successful stroke treatment, recovery, rehabilitation and prevention. In this review, we focus on the pathophysiology of stroke, major advances in the identification of therapeutic targets and recent trends in stroke research.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies

                Bookmark

                Author and article information

                Journal
                Ann Transl Med
                Ann Transl Med
                ATM
                Annals of Translational Medicine
                AME Publishing Company
                2305-5839
                2305-5847
                November 2022
                November 2022
                : 10
                : 22
                : 1245
                Affiliations
                [1 ]Department of Neurology, Xingtai People’s Hospital, Xingtai , China;
                [2 ]Department of Cardiology, Xingtai Third Hospital, Xingtai , China
                Author notes

                Contributions: (I) Conception and design: H Jia; (II) Administrative support: H Jia; (III) Provision of study materials or patients: H Jia; (IV) Collection and assembly of data: H Jia, Y Liu; (V) Data analysis and interpretation: H Jia, Y Chen; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

                Correspondence to: Hong Jia. Department of Neurology, Xingtai People’s Hospital, 16 Hongxing Street, Xiangdu District, Xingtai 054001, China. Email: Jiahong_123456@ 123456163.com .
                Article
                atm-10-22-1245
                10.21037/atm-22-5225
                9761130
                11832feb-047e-4076-bae7-8b3f25354408
                2022 Annals of Translational Medicine. All rights reserved.

                Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0.

                History
                : 09 October 2022
                : 15 November 2022
                Categories
                Original Article

                cerebral ischemia/reperfusion (ci/r) injury,tgr5,sox9,nrf2/ho-1 signaling

                Comments

                Comment on this article