29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Novel Three-Filament Model of Force Generation in Eccentric Contraction of Skeletal Muscles

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We propose and examine a three filament model of skeletal muscle force generation, thereby extending classical cross-bridge models by involving titin-actin interaction upon active force production. In regions with optimal actin-myosin overlap, the model does not alter energy and force predictions of cross-bridge models for isometric contractions. However, in contrast to cross-bridge models, the three filament model accurately predicts history-dependent force generation in half sarcomeres for eccentric and concentric contractions, and predicts the activation-dependent forces for stretches beyond actin-myosin filament overlap.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Stretching DNA with optical tweezers.

          Force-extension (F-x) relationships were measured for single molecules of DNA under a variety of buffer conditions, using an optical trapping interferometer modified to incorporate feedback control. One end of a single DNA molecule was fixed to a coverglass surface by means of a stalled RNA polymerase complex. The other end was linked to a microscopic bead, which was captured and held in an optical trap. The DNA was subsequently stretched by moving the coverglass with respect to the trap using a piezo-driven stage, while the position of the bead was recorded at nanometer-scale resolution. An electronic feedback circuit was activated to prevent bead movement beyond a preset clamping point by modulating the light intensity, altering the trap stiffness dynamically. This arrangement permits rapid determination of the F-x relationship for individual DNA molecules as short as -1 micron with unprecedented accuracy, subjected to both low (approximately 0.1 pN) and high (approximately 50 pN) loads: complete data sets are acquired in under a minute. Experimental F-x relationships were fit over much of their range by entropic elasticity theories based on worm-like chain models. Fits yielded a persistence length, Lp, of approximately 47 nm in a buffer containing 10 mM Na1. Multivalent cations, such as Mg2+ or spermidine 3+, reduced Lp to approximately 40 nm. Although multivalent ions shield most of the negative charges on the DNA backbone, they did not further reduce Lp significantly, suggesting that the intrinsic persistence length remains close to 40 nm. An elasticity theory incorporating both enthalpic and entropic contributions to stiffness fit the experimental results extremely well throughout the full range of extensions and returned an elastic modulus of approximately 1100 pN.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Folding-unfolding transitions in single titin molecules characterized with laser tweezers.

            Titin, a giant filamentous polypeptide, is believed to play a fundamental role in maintaining sarcomeric structural integrity and developing what is known as passive force in muscle. Measurements of the force required to stretch a single molecule revealed that titin behaves as a highly nonlinear entropic spring. The molecule unfolds in a high-force transition beginning at 20 to 30 piconewtons and refolds in a low-force transition at approximately 2.5 piconewtons. A fraction of the molecule (5 to 40 percent) remains permanently unfolded, behaving as a wormlike chain with a persistence length (a measure of the chain's bending rigidity) of 20 angstroms. Force hysteresis arises from a difference between the unfolding and refolding kinetics of the molecule relative to the stretch and release rates in the experiments, respectively. Scaling the molecular data up to sarcomeric dimensions reproduced many features of the passive force versus extension curve of muscle fibers.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The relation between force and speed in muscular contraction.

              Ellen Katz (1939)
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                27 March 2015
                2015
                : 10
                : 3
                : e0117634
                Affiliations
                [1 ]Department of Mathematics and Scientific Computing, University of Graz, 8010 Graz, Austria
                [2 ]Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada
                Semmelweis University, HUNGARY
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TL WH. Performed the experiments: TL WH. Analyzed the data: GST GD TL WH. Contributed reagents/materials/analysis tools: GST GD TL WH. Wrote the paper: GST WH. Mathematical modelling: GST GD.

                Article
                PONE-D-14-30610
                10.1371/journal.pone.0117634
                4376863
                25816319
                119ed4e7-351e-45a1-937a-1d2e1911e92f
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 9 July 2014
                : 29 December 2014
                Page count
                Figures: 8, Tables: 0, Pages: 16
                Funding
                Funding provided by the Austrian Science Fund: www.fwf.ac.at, Natural Sciences and Engineering Research Council of Canada: www.nserc-crsng.gc.ca, the Canada Research Chair Programme: www.chairs-chaires.gc.ca/home-accueil-eng.aspx, and the Killam Foundation: http://killamlaureates.ca. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article