51
views
0
recommends
+1 Recommend
0 collections
    6
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Proving Lipid Rafts Exist: Membrane Domains in the Prokaryote Borrelia burgdorferi Have the Same Properties as Eukaryotic Lipid Rafts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lipid rafts in eukaryotic cells are sphingolipid and cholesterol-rich, ordered membrane regions that have been postulated to play roles in many membrane functions, including infection. We previously demonstrated the existence of cholesterol-lipid-rich domains in membranes of the prokaryote, B. burgdorferi, the causative agent of Lyme disease [LaRocca et al. (2010) Cell Host & Microbe 8, 331–342]. Here, we show that these prokaryote membrane domains have the hallmarks of eukaryotic lipid rafts, despite lacking sphingolipids. Substitution experiments replacing cholesterol lipids with a set of sterols, ranging from strongly raft-promoting to raft-inhibiting when mixed with eukaryotic sphingolipids, showed that sterols that can support ordered domain formation are both necessary and sufficient for formation of B. burgdorferi membrane domains that can be detected by transmission electron microscopy or in living organisms by Förster resonance energy transfer (FRET). Raft-supporting sterols were also necessary and sufficient for formation of high amounts of detergent resistant membranes from B. burgdorferi. Furthermore, having saturated acyl chains was required for a biotinylated lipid to associate with the cholesterol-lipid-rich domains in B. burgdorferi, another characteristic identical to that of eukaryotic lipid rafts. Sterols supporting ordered domain formation were also necessary and sufficient to maintain B. burgdorferi membrane integrity, and thus critical to the life of the organism. These findings provide compelling evidence for the existence of lipid rafts and show that the same principles of lipid raft formation apply to prokaryotes and eukaryotes despite marked differences in their lipid compositions.

          Author Summary

          Specialized domains (“lipid rafts”) rich in specific membrane lipids (sphingolipids and cholesterol) have been proposed to form in the cell membranes of higher organisms, and to be of functional importance. We recently found that domains can be detected in the membranes of the bacterium that causes Lyme disease, Borrelia burgdorferi. In this report it is shown that, despite a lack of sphingolipids in B. burgdorferi, these domains have all the characteristic properties of lipid rafts, and can be detected in living B. burgdorferi. This shows that true lipid rafts can form in bacteria. In addition, it is shown that sterols having a structure that promotes lipid raft formation are necessary and sufficient for those sterols to maintain B. burgdorferi membrane integrity. This is suggestive of a role for membrane domains in B. burgdorferi membrane integrity. Therefore, interfering with lipid raft formation may have biomedical applications in combatting B. burgdorferi infections.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          A rapid method of total lipid extraction and purification.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lyme disease-a tick-borne spirochetosis?

            A treponema-like spirochete was detected in and isolated from adult Ixodes dammini, the incriminated tick vector of Lyme disease. Causally related to the spirochetes may be long-lasting cutaneous lesions that appeared on New Zealand White rabbits 10 to 12 weeks after infected ticks fed on them. Samples of serum from patients with Lyme disease were shown by indirect immunofluorescence to contain antibodies to this agent. It is suggested that the newly discovered spirochete is involved in the etiology of Lyme disease.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Structure and origin of ordered lipid domains in biological membranes.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2013
                May 2013
                16 May 2013
                : 9
                : 5
                : e1003353
                Affiliations
                [1 ]Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
                [2 ]Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
                [3 ]Department of Biochemistry, McGill University, Montreal, Quebec, Canada
                Medical College of Wisconsin, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TJL PP EL. Performed the experiments: TJL PP AT. Analyzed the data: TJL PP SC EL. Contributed reagents/materials/analysis tools: JRS EL JLB. Wrote the paper: TJL PP SC EL JRS.

                Article
                PPATHOGENS-D-12-03152
                10.1371/journal.ppat.1003353
                3656094
                23696733
                11c9a561-c7c7-4e55-a54b-c32091a1b988
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 December 2012
                : 26 March 2013
                Page count
                Pages: 11
                Funding
                This work was supported by NIH grants R01-GM-099892 to EL, RO1-AI-027044, RO1-AR-040445 to JLB, a Northeast Biodefense Center Grant U54AI-057158 (Lipkin) to AT and Operating Grant MOP-115201 from the Canadian Institutes of Health Research to JRS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Biophysics
                Microbiology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article