2
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inflammatory leptomeningeal cytokines mediate COVID-19 neurologic symptoms in cancer patients

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          SARS-CoV-2 infection induces a wide spectrum of neurologic dysfunction that emerges weeks after the acute respiratory infection. To better understand this pathology, we prospectively analyzed of a cohort of cancer patients with neurologic manifestations of COVID-19, including a targeted proteomics analysis of the cerebrospinal fluid. We find that cancer patients with neurologic sequelae of COVID-19 harbor leptomeningeal inflammatory cytokines in the absence of viral neuroinvasion. The majority of these inflammatory mediators are driven by type II interferon and are known to induce neuronal injury in other disease states. In these patients, levels of matrix metalloproteinase-10 within the spinal fluid correlate with the degree of neurologic dysfunction. Furthermore, this neuroinflammatory process persists weeks after convalescence from acute respiratory infection. These prolonged neurologic sequelae following systemic cytokine release syndrome lead to long-term neurocognitive dysfunction. Our findings suggest a role for anti-inflammatory treatment(s) in the management of neurologic complications of COVID-19 infection.

          Graphical abstract

          Highlights

          • Inflammatory cytokines are detected in the CSF weeks after SARS-CoV-2 infection

          • Levels of IFN-β and IL-8 are specifically enriched in the CSF compared with plasma

          • CSF markers of senescence and neurodegeneration are consistent with neuronal injury

          • Intracranial levels of MMP-10 correlate with the degree of neurologic disability

          Abstract

          Remsik et al. analyze the cerebrospinal fluid of cancer patients with neurologic symptoms of COVID-19 and detect unique markers of inflammation and neurodegeneration, present weeks after initial SARS-CoV-2 infection. Cytokine storming, both systemically and intracranially, likely contribute to neurologic dysfunction, indicating a potential therapeutic target for investigation.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China

          The outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China, is serious and has the potential to become an epidemic worldwide. Several studies have described typical clinical manifestations including fever, cough, diarrhea, and fatigue. However, to our knowledge, it has not been reported that patients with COVID-19 had any neurologic manifestations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurologic Features in Severe SARS-CoV-2 Infection

            To the Editor: We report the neurologic features in an observational series of 58 of 64 consecutive patients admitted to the hospital because of acute respiratory distress syndrome (ARDS) due to Covid-19. The patients received similar evaluations by intensivists in two intensive care units (ICUs) in Strasbourg, France, between March 3 and April 3, 2020. Six patients were excluded because of paralytic neuromuscular blockade when neurologic data were collected or because they had died without a neurologic examination having been performed. In all 58 patients, reverse-transcriptase–polymerase-chain-reaction (RT-PCR) assays of nasopharyngeal samples were positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The median age of the patients was 63 years, and the median Simplified Acute Physiology Score II at the time of neurologic examination was 52 (interquartile range, 37 to 65, on a scale ranging from 0 to 163, with higher scores indicating greater severity of illness). Seven patients had had previous neurologic disorders, including transient ischemic attack, partial epilepsy, and mild cognitive impairment. The neurologic findings were recorded in 8 of the 58 patients (14%) on admission to the ICU (before treatment) and in 39 patients (67%) when sedation and a neuromuscular blocker were withheld. Agitation was present in 40 patients (69%) when neuromuscular blockade was discontinued (Table 1). A total of 26 of 40 patients were noted to have confusion according to the Confusion Assessment Method for the ICU; those patients could be evaluated when they were responsive (i.e., they had a score of −1 to 1 on the Richmond Agitation and Sedation Scale, on a scale of −5 [unresponsive] to +4 [combative]). Diffuse corticospinal tract signs with enhanced tendon reflexes, ankle clonus, and bilateral extensor plantar reflexes were present in 39 patients (67%). Of the patients who had been discharged at the time of this writing, 15 of 45 (33%) had had a dysexecutive syndrome consisting of inattention, disorientation, or poorly organized movements in response to command. Magnetic resonance imaging (MRI) of the brain was performed in 13 patients (Figs. S1 through S3 in the Supplementary Appendix, available with the full text of this letter at NEJM.org). Although these patients did not have focal signs that suggested stroke, they underwent MRI because of unexplained encephalopathic features. Enhancement in leptomeningeal spaces was noted in 8 patients, and bilateral frontotemporal hypoperfusion was noted in all 11 patients who underwent perfusion imaging. Two asymptomatic patients each had a small acute ischemic stroke with focal hyperintensity on diffusion-weighted imaging and an overlapping decreased apparent diffusion coefficient, and 1 patient had a subacute ischemic stroke with superimposed increased diffusion-weighted imaging and apparent diffusion coefficient signals. In the 8 patients who underwent electroencephalography, only nonspecific changes were detected; 1 of the 8 patients had diffuse bifrontal slowing consistent with encephalopathy. Examination of cerebrospinal fluid (CSF) samples obtained from 7 patients showed no cells; in 2 patients, oligoclonal bands were present with an identical electrophoretic pattern in serum, and protein and IgG levels were elevated in 1 patient. RT-PCR assays of the CSF samples were negative for SARS-CoV-2 in all 7 patients. In this consecutive series of patients, ARDS due to SARS-CoV-2 infection was associated with encephalopathy, prominent agitation and confusion, and corticospinal tract signs. Two of 13 patients who underwent brain MRI had single acute ischemic strokes. Data are lacking to determine which of these features were due to critical illness–related encephalopathy, cytokines, or the effect or withdrawal of medication, and which features were specific to SARS-CoV-2 infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The reactome pathway knowledgebase

              Abstract The Reactome Knowledgebase (https://reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations in a single consistent data model, an extended version of a classic metabolic map. Reactome functions both as an archive of biological processes and as a tool for discovering functional relationships in data such as gene expression profiles or somatic mutation catalogs from tumor cells. To extend our ability to annotate human disease processes, we have implemented a new drug class and have used it initially to annotate drugs relevant to cardiovascular disease. Our annotation model depends on external domain experts to identify new areas for annotation and to review new content. New web pages facilitate recruitment of community experts and allow those who have contributed to Reactome to identify their contributions and link them to their ORCID records. To improve visualization of our content, we have implemented a new tool to automatically lay out the components of individual reactions with multiple options for downloading the reaction diagrams and associated data, and a new display of our event hierarchy that will facilitate visual interpretation of pathway analysis results.
                Bookmark

                Author and article information

                Journal
                Cancer Cell
                Cancer Cell
                Cancer Cell
                Elsevier Inc.
                1535-6108
                1878-3686
                16 January 2021
                16 January 2021
                Affiliations
                [1 ]Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
                [2 ]Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
                [3 ]Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
                [4 ]Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
                [5 ]Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
                [6 ]Department of Critical Care, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
                [7 ]Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
                [8 ]Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
                Author notes
                []Corresponding author
                [9]

                These authors contributed equally

                [10]

                Lead contact

                Article
                S1535-6108(21)00051-9
                10.1016/j.ccell.2021.01.007
                7833316
                33508216
                11ee7942-666d-4826-87e9-730e40d4fd69
                © 2021 Elsevier Inc.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 7 October 2020
                : 18 December 2020
                : 12 January 2021
                Categories
                Article

                Oncology & Radiotherapy
                sars-cov-2,covid-19,neuroinflammation,encephalopathy,cancer,cerebrospinal fluid

                Comments

                Comment on this article