16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Glaucoma management in the era of artificial intelligence

      , , , , , ,  
      British Journal of Ophthalmology
      BMJ

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glaucoma is a result of irreversible damage to the retinal ganglion cells. While an early intervention could minimise the risk of vision loss in glaucoma, its asymptomatic nature makes it difficult to diagnose until a late stage. The diagnosis of glaucoma is a complicated and expensive effort that is heavily dependent on the experience and expertise of a clinician. The application of artificial intelligence (AI) algorithms in ophthalmology has improved our understanding of many retinal, macular, choroidal and corneal pathologies. With the advent of deep learning, a number of tools for the classification, segmentation and enhancement of ocular images have been developed. Over the years, several AI techniques have been proposed to help detect glaucoma by analysis of functional and/or structural evaluations of the eye. Moreover, the use of AI has also been explored to improve the reliability of ascribing disease prognosis. This review summarises the role of AI in the diagnosis and prognosis of glaucoma, discusses the advantages and challenges of using AI systems in clinics and predicts likely areas of future progress.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Primary open-angle glaucoma.

            Glaucoma is an optic neuropathy that is characterized by the progressive degeneration of the optic nerve, leading to visual impairment. Glaucoma is the main cause of irreversible blindness worldwide, but typically remains asymptomatic until very severe. Open-angle glaucoma comprises the majority of cases in the United States and western Europe, of which, primary open-angle glaucoma (POAG) is the most common type. By contrast, in China and other Asian countries, angle-closure glaucoma is highly prevalent. These two types of glaucoma are characterized based on the anatomic configuration of the aqueous humour outflow pathway. The pathophysiology of POAG is not well understood, but it is an optic neuropathy that is thought to be associated with intraocular pressure (IOP)-related damage to the optic nerve head and resultant loss of retinal ganglion cells (RGCs). POAG is generally diagnosed during routine eye examination, which includes fundoscopic evaluation and visual field assessment (using perimetry). An increase in IOP, measured by tonometry, is not essential for diagnosis. Management of POAG includes topical drug therapies and surgery to reduce IOP, although new therapies targeting neuroprotection of RGCs and axonal regeneration are under development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search.

              We present a novel framework combining convolutional neural networks (CNN) and graph search methods (termed as CNN-GS) for the automatic segmentation of nine layer boundaries on retinal optical coherence tomography (OCT) images. CNN-GS first utilizes a CNN to extract features of specific retinal layer boundaries and train a corresponding classifier to delineate a pilot estimate of the eight layers. Next, a graph search method uses the probability maps created from the CNN to find the final boundaries. We validated our proposed method on 60 volumes (2915 B-scans) from 20 human eyes with non-exudative age-related macular degeneration (AMD), which attested to effectiveness of our proposed technique.
                Bookmark

                Author and article information

                Journal
                British Journal of Ophthalmology
                Br J Ophthalmol
                BMJ
                0007-1161
                1468-2079
                February 21 2020
                March 2020
                March 2020
                October 22 2019
                : 104
                : 3
                : 301-311
                Article
                10.1136/bjophthalmol-2019-315016
                31640973
                1200fdbf-0241-4591-8ed4-b78fc7f72c15
                © 2019
                History

                Comments

                Comment on this article