65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multi-Session Transcranial Direct Current Stimulation (tDCS) Elicits Inflammatory and Regenerative Processes in the Rat Brain

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transcranial direct current stimulation (tDCS) is increasingly being used in human studies as an adjuvant tool to promote recovery of function after stroke. However, its neurobiological effects are still largely unknown. Electric fields are known to influence the migration of various cell types in vitro, but effects in vivo remain to be shown. Hypothesizing that tDCS might elicit the recruitment of cells to the cortex, we here studied the effects of tDCS in the rat brain in vivo. Adult Wistar rats (n = 16) were randomized to either anodal or cathodal stimulation for either 5 or 10 consecutive days (500 µA, 15 min). Bromodeoxyuridine (BrdU) was given systemically to label dividing cells throughout the experiment. Immunohistochemical analyses ex vivo included stainings for activated microglia and endogenous neural stem cells (NSC). Multi-session tDCS with the chosen parameters did not cause a cortical lesion. An innate immune response with early upregulation of Iba1-positive activated microglia occurred after both cathodal and anodal tDCS. The involvement of adaptive immunity as assessed by ICAM1-immunoreactivity was less pronounced. Most interestingly, only cathodal tDCS increased the number of endogenous NSC in the stimulated cortex. After 10 days of cathodal stimulation, proliferating NSC increased by ∼60%, with a significant effect of both polarity and number of tDCS sessions on the recruitment of NSC. We demonstrate a pro-inflammatory effect of both cathodal and anodal tDCS, and a polarity-specific migratory effect on endogenous NSC in vivo. Our data suggest that tDCS in human stroke patients might also elicit NSC activation and modulate neuroinflammation.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Physiological basis of transcranial direct current stimulation.

          Since the rediscovery of transcranial direct current stimulation (tDCS) about 10 years ago, interest in tDCS has grown exponentially. A noninvasive stimulation technique that induces robust excitability changes within the stimulated cortex, tDCS is increasingly being used in proof-of-principle and stage IIa clinical trials in a wide range of neurological and psychiatric disorders. Alongside these clinical studies, detailed work has been performed to elucidate the mechanisms underlying the observed effects. In this review, the authors bring together the results from these pharmacological, neurophysiological, and imaging studies to describe their current knowledge of the physiological effects of tDCS. In addition, the theoretical framework for how tDCS affects motor learning is proposed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke.

            Stroke is a leading cause of adult motor disability. Despite recent progress, recovery of motor function after stroke is usually incomplete. This double blind, Sham-controlled, crossover study was designed to test the hypothesis that non-invasive stimulation of the motor cortex could improve motor function in the paretic hand of patients with chronic stroke. Hand function was measured using the Jebsen-Taylor Hand Function Test (JTT), a widely used, well validated test for functional motor assessment that reflects activities of daily living. JTT measured in the paretic hand improved significantly with non-invasive transcranial direct current stimulation (tDCS), but not with Sham, an effect that outlasted the stimulation period, was present in every single patient tested and that correlated with an increment in motor cortical excitability within the affected hemisphere, expressed as increased recruitment curves (RC) and reduced short-interval intracortical inhibition. These results document a beneficial effect of non-invasive cortical stimulation on a set of hand functions that mimic activities of daily living in the paretic hand of patients with chronic stroke, and suggest that this interventional strategy in combination with customary rehabilitative treatments may play an adjuvant role in neurorehabilitation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors.

              The adult brain is extremely vulnerable to various insults. The recent discovery of neural progenitors in adult mammals, however, raises the possibility of repairing damaged tissue by recruiting their latent regenerative potential. Here we show that activation of endogenous progenitors leads to massive regeneration of hippocampal pyramidal neurons after ischemic brain injury. Endogenous progenitors proliferate in response to ischemia and subsequently migrate into the hippocampus to regenerate new neurons. Intraventricular infusion of growth factors markedly augments these responses, thereby increasing the number of newborn neurons. Our studies suggest that regenerated neurons are integrated into the existing brain circuitry and contribute to ameliorating neurological deficits. These results expand the possibility of novel neuronal cell regeneration therapies for stroke and other neurological diseases.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                22 August 2012
                : 7
                : 8
                : e43776
                Affiliations
                [1 ]Department of Neurology, University Hospital of Cologne, Cologne, Germany
                [2 ]Center for Experimental Medicine, University Hospital of Cologne, Cologne, Germany
                [3 ]Max Planck Institute for Neurological Research, Cologne, Germany
                [4 ]Cognitive Neurology Section, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
                Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Germany
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MAR MW RS MS. Performed the experiments: MAR MHK MW RB RK. Analyzed the data: MAR MHK RG MS. Contributed reagents/materials/analysis tools: RS RG. Wrote the paper: MAR GRF MS.

                Article
                PONE-D-12-18539
                10.1371/journal.pone.0043776
                3425495
                22928032
                122ccd54-2c7c-43d9-9f6c-c2f267e2c7cc
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 June 2012
                : 25 July 2012
                Page count
                Pages: 7
                Funding
                This work was supported by the Koeln Fortune Program / Faculty of Medicine, University of Cologne, Germany (143/2011). The authors gratefully acknowledge a personal grant by Mr. U. Eichrodt to RK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Developmental Biology
                Stem Cells
                Adult Stem Cells
                Neural Stem Cells
                Stem Cell Niche
                Immunology
                Immune Response
                Immunomodulation
                Model Organisms
                Animal Models
                Neuroscience
                Developmental Neuroscience
                Neural Stem Cells
                Neurobiology of Disease and Regeneration
                Medicine
                Neurology
                Cerebrovascular Diseases
                Ischemic Stroke
                Transient Ischemic Attacks

                Uncategorized
                Uncategorized

                Comments

                Comment on this article