405
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Importance of pollinators in changing landscapes for world crops.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale.

          Related collections

          Most cited references 21

          • Record: found
          • Abstract: found
          • Article: not found

          Crop pollination from native bees at risk from agricultural intensification.

          Ecosystem services are critical to human survival; in selected cases, maintaining these services provides a powerful argument for conserving biodiversity. Yet, the ecological and economic underpinnings of most services are poorly understood, impeding their conservation and management. For centuries, farmers have imported colonies of European honey bees (Apis mellifera) to fields and orchards for pollination services. These colonies are becoming increasingly scarce, however, because of diseases, pesticides, and other impacts. Native bee communities also provide pollination services, but the amount they provide and how this varies with land management practices are unknown. Here, we document the individual species and aggregate community contributions of native bees to crop pollination, on farms that varied both in their proximity to natural habitat and management type (organic versus conventional). On organic farms near natural habitat, we found that native bee communities could provide full pollination services even for a crop with heavy pollination requirements (e.g., watermelon, Citrullus lanatus), without the intervention of managed honey bees. All other farms, however, experienced greatly reduced diversity and abundance of native bees, resulting in insufficient pollination services from native bees alone. We found that diversity was essential for sustaining the service, because of year-to-year variation in community composition. Continued degradation of the agro-natural landscape will destroy this "free" service, but conservation and restoration of bee habitat are potentially viable economic alternatives for reducing dependence on managed honey bees.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wild bees enhance honey bees' pollination of hybrid sunflower.

            Pollinators are required for producing 15-30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Pollinator diversity and crop pollination services are at risk.

                Bookmark

                Author and article information

                Journal
                Proc. Biol. Sci.
                Proceedings. Biological sciences / The Royal Society
                0962-8452
                0962-8452
                Feb 7 2007
                : 274
                : 1608
                Affiliations
                [1 ] Agroecology, University of Göttingen, Waldweg 26, 37073 Göttingen, Germany. aklein2@gwdg.de
                Article
                8W42N6V08K761023
                10.1098/rspb.2006.3721
                1702377
                17164193
                12a9b799-6543-4a98-b68f-c3d88b2fe9a3

                Comments

                Comment on this article