10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Major Update: Masks for Prevention of SARS-CoV-2 in Health Care and Community Settings—Final Update of a Living, Rapid Review

      other
      , MD, , MLS
      Annals of Internal Medicine
      American College of Physicians

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This systematic review is the final update of a living systematic review on the use of masks for prevention of SARS-CoV-2 infection in health care and community settings. The authors summarize changes from the last update and the cumulation of randomized and observational evidence on use of masks for the prevention of COVID-19.

          Abstract

          Background:

          Optimal use of masks for preventing COVID-19 is unclear.

          Purpose:

          To update an evidence synthesis on N95, surgical, and cloth mask effectiveness in community and health care settings for preventing SARS-CoV-2 infection.

          Data Sources:

          MEDLINE, EMBASE, medRxiv (3 June 2022 to 2 January 2023), and reference lists.

          Study Selection:

          Randomized trials of interventions to increase mask use and risk for SARS-CoV-2 infection and observational studies of mask use that controlled for potential confounders.

          Data Extraction:

          Two investigators sequentially abstracted study data and rated quality.

          Data Synthesis:

          Three randomized trials and 21 observational studies were included. In community settings, mask use may be associated with a small reduced risk for SARS-CoV-2 infection versus no mask use, on the basis of 2 randomized trials and 7 observational studies. In routine patient care settings, surgical masks and N95 respirators may be associated with similar risk for SARS-CoV-2 infection, on the basis of 1 new randomized trial with some imprecision and 4 observational studies. Evidence from observational studies was insufficient to evaluate other mask comparisons due to methodological limitations and inconsistency.

          Limitation:

          Few randomized trials, studies had methodological limitations and some imprecision, suboptimal adherence and pragmatic aspects of randomized trials potentially attenuated benefits, very limited evidence on harms, uncertain applicability to Omicron variant predominant era, meta-analysis not done due to heterogeneity, unable to formally assess for publication bias, and restricted to English-language articles.

          Conclusion:

          Updated evidence suggests that masks may be associated with a small reduction in risk for SARS-CoV-2 infection in community settings. Surgical masks and N95 respirators may be associated with similar infection risk in routine patient care settings, but a beneficial effect of N95 respirators cannot be ruled out.

          Primary Funding Source:

          None.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found

          Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis

          Summary Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 and is spread person-to-person through close contact. We aimed to investigate the effects of physical distance, face masks, and eye protection on virus transmission in health-care and non-health-care (eg, community) settings. Methods We did a systematic review and meta-analysis to investigate the optimum distance for avoiding person-to-person virus transmission and to assess the use of face masks and eye protection to prevent transmission of viruses. We obtained data for SARS-CoV-2 and the betacoronaviruses that cause severe acute respiratory syndrome, and Middle East respiratory syndrome from 21 standard WHO-specific and COVID-19-specific sources. We searched these data sources from database inception to May 3, 2020, with no restriction by language, for comparative studies and for contextual factors of acceptability, feasibility, resource use, and equity. We screened records, extracted data, and assessed risk of bias in duplicate. We did frequentist and Bayesian meta-analyses and random-effects meta-regressions. We rated the certainty of evidence according to Cochrane methods and the GRADE approach. This study is registered with PROSPERO, CRD42020177047. Findings Our search identified 172 observational studies across 16 countries and six continents, with no randomised controlled trials and 44 relevant comparative studies in health-care and non-health-care settings (n=25 697 patients). Transmission of viruses was lower with physical distancing of 1 m or more, compared with a distance of less than 1 m (n=10 736, pooled adjusted odds ratio [aOR] 0·18, 95% CI 0·09 to 0·38; risk difference [RD] −10·2%, 95% CI −11·5 to −7·5; moderate certainty); protection was increased as distance was lengthened (change in relative risk [RR] 2·02 per m; p interaction=0·041; moderate certainty). Face mask use could result in a large reduction in risk of infection (n=2647; aOR 0·15, 95% CI 0·07 to 0·34, RD −14·3%, −15·9 to −10·7; low certainty), with stronger associations with N95 or similar respirators compared with disposable surgical masks or similar (eg, reusable 12–16-layer cotton masks; p interaction=0·090; posterior probability >95%, low certainty). Eye protection also was associated with less infection (n=3713; aOR 0·22, 95% CI 0·12 to 0·39, RD −10·6%, 95% CI −12·5 to −7·7; low certainty). Unadjusted studies and subgroup and sensitivity analyses showed similar findings. Interpretation The findings of this systematic review and meta-analysis support physical distancing of 1 m or more and provide quantitative estimates for models and contact tracing to inform policy. Optimum use of face masks, respirators, and eye protection in public and health-care settings should be informed by these findings and contextual factors. Robust randomised trials are needed to better inform the evidence for these interventions, but this systematic appraisal of currently best available evidence might inform interim guidance. Funding World Health Organization.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Transmission of COVID-19 to Health Care Personnel During Exposures to a Hospitalized Patient — Solano County, California, February 2020

              On February 26, 2020, the first U.S. case of community-acquired coronavirus disease 2019 (COVID-19) was confirmed in a patient hospitalized in Solano County, California ( 1 ). The patient was initially evaluated at hospital A on February 15; at that time, COVID-19 was not suspected, as the patient denied travel or contact with symptomatic persons. During a 4-day hospitalization, the patient was managed with standard precautions and underwent multiple aerosol-generating procedures (AGPs), including nebulizer treatments, bilevel positive airway pressure (BiPAP) ventilation, endotracheal intubation, and bronchoscopy. Several days after the patient’s transfer to hospital B, a real-time reverse transcription–polymerase chain reaction (real-time RT-PCR) test for SARS-CoV-2 returned positive. Among 121 hospital A health care personnel (HCP) who were exposed to the patient, 43 (35.5%) developed symptoms during the 14 days after exposure and were tested for SARS-CoV-2; three had positive test results and were among the first known cases of probable occupational transmission of SARS-CoV-2 to HCP in the United States. Little is known about specific risk factors for SARS-CoV-2 transmission in health care settings. To better characterize and compare exposures among HCP who did and did not develop COVID-19, standardized interviews were conducted with 37 hospital A HCP who were tested for SARS-CoV-2, including the three who had positive test results. Performing physical examinations and exposure to the patient during nebulizer treatments were more common among HCP with laboratory-confirmed COVID-19 than among those without COVID-19; HCP with COVID-19 also had exposures of longer duration to the patient. Because transmission-based precautions were not in use, no HCP wore personal protective equipment (PPE) recommended for COVID-19 patient care during contact with the index patient. Health care facilities should emphasize early recognition and isolation of patients with possible COVID-19 and use of recommended PPE to minimize unprotected, high-risk HCP exposures and protect the health care workforce. HCP with potential exposures to the index patient at hospital A were identified through medical record review. Hospital and health department staff members contacted HCP for initial risk stratification and classified HCP into categories of high, medium, low, and no identifiable risk, according to CDC guidance.* HCP at high or medium risk were furloughed and actively monitored; those at low risk were asked to self-monitor for symptoms for 14 days from their last exposure. † Nasopharyngeal and oropharyngeal specimens were collected once from HCP who developed symptoms consistent with COVID-19 § during their 14-day monitoring period, and specimens were tested for SARS-CoV-2 using real-time RT-PCR at the California Department of Public Health. Serologic testing and testing for other respiratory viruses was not performed. The investigation team, including hospital, local and state health departments, and CDC staff members, attempted to contact all 43 tested HCP by phone to conducted interviews regarding index patient exposures using a standardized exposure assessment tool. Two-sided p-values were calculated using Fisher’s exact test for categorical variables and Wilcoxon rank-sum test for continuous variables; p-values 60 1/3 (33) 3/34 (9) Median (IQR) total estimated time in patient room, mins 120 (120–420) 25 (10–50) 0.06 Median (IQR) total estimated time in patient room during AGPs, mins¶ 95 (0–160) 0 (0–3) 0.13 Came within 6 ft of index patient 3/3 (100) 30/34 (91) 1.00 Reported direct skin-to-skin contact with index patient 0/3 (0) 8/34 (24) 1.00 Index patient either masked or on closed-system ventilator when contact occurred Always 0/3 (0) 7/34 (23) 0.58 Sometimes 2/3 (67) 10/34 (32) Never 1/3 (33) 14/34 (45) Abbreviations: AGPs = aerosol-generating procedures; COVID-19 = coronavirus disease 2019; IQR = interquartile range. * Versus sometimes or never. † No HCP reported use of gowns, N95 respirators, powered air-purifying respirators (PAPRs), or eye protection during any patient care activities for index patient. § Denominators for PPE use during AGPs are numbers of HCP exposed to AGPs. ¶ This was estimated by asking each interviewed staff member to report the number and average duration of each exposure to the patient during AGPs. Total estimated duration for each AGP was calculated by multiplying the number of exposures by average duration of exposure during that AGP. Total estimated exposure time for all AGPs was calculated by adding total duration of exposures across all AGPs. Discussion HCP are at high risk for acquiring infections during novel disease outbreaks, especially before transmission dynamics are fully characterized. The cases reported here are among the first known reports of occupational transmission of SARS-CoV-2 to HCP in the United States, although more cases have since been identified ( 2 ). Little is known to date about SARS-CoV-2 transmission in health care settings. Reports from Illinois, Singapore, and Hong Kong have described cohorts of HCP exposed to patients with COVID-19 without any documented HCP transmission ( 3 – 5 ); most HCP exposures in these cases occurred with patients while HCP were using contact, droplet, or airborne precautions. §§ As community transmission of COVID-19 increases, determining whether HCP infections are acquired in the workplace or in the community becomes more difficult. This investigation presented a unique opportunity to analyze exposures associated with COVID-19 transmission in a health care setting without recognized community exposures. Describing exposures among HCP who did and did not develop COVID-19 can inform guidance on how to best protect HCP. Among a cohort of 121 exposed HCP, 43 of whom were symptomatic and tested, three developed confirmed COVID-19, despite multiple unprotected exposures among HCP. HCP who developed COVID-19 had longer durations of exposure to the index patient; exposures during nebulizer treatments and BiPAP were also more common among HCP who developed COVID-19. These findings underscore the heightened COVID-19 transmission risk associated with prolonged, unprotected patient contact and the importance of ensuring that HCP exposed to patients with confirmed or suspected COVID-19 are protected. CDC recommends use of N95 or higher-level respirators and airborne infection isolation rooms when performing AGPs for patients with suspected or confirmed COVID-19; for care that does not include AGPs, CDC recommends use of respirators where available. ¶¶ In California, the Division of Occupational Safety and Health Aerosol Transmissible Diseases standard requires respirators for HCP exposed to potentially airborne pathogens such as SARS-CoV-2; PAPRs are required during AGPs.*** Studies of other respiratory pathogens have documented increased transmission risk associated with AGPs, many of which can generate large droplets as well as small particle aerosols ( 6 ). A recent study found that SARS-CoV-2 generated through nebulization can remain viable in aerosols <5 μm for hours, suggesting that SARS-CoV-2 could be transmitted at least in part through small particle aerosols ( 7 ). Among the three HCP with COVID-19 at hospital A, two had index patient exposures during AGPs; one did not and reported wearing a facemask but no eye protection for most of the contact time with the patient. Given multiple unprotected exposures among HCP in this investigation, separating risks associated with specific procedures from those associated with duration of exposure and lack of recommended PPE is difficult. More research to determine the risks associated with specific procedures and the protectiveness of different types of PPE, as well as the extent of short-range aerosol transmission of SARS-CoV-2, is needed. Patient source control (e.g., patient wearing a mask or connected to a closed-system ventilator during HCP exposures) might also reduce risk of SARS-CoV-2 transmission. Although the index patient was not masked or ventilated for the majority of hospital A admission, at hospital B, where the patient remained on a closed system ventilator from arrival to receiving a positive test result, none of the 146 HCP identified as exposed developed known COVID-19 infection ( 8 ). Source control strategies, such as masking of patients, visitors, and HCP, should be considered by health care facilities to reduce risk of SARS-CoV-2 transmission. This findings in this report are subject to at least three limitations. First, exposures among HCP were self-reported and are subject to recall bias. Second, the low number of cases limits the ability to detect statistically significant differences in exposures and does not allow for multivariable analyses to adjust for potential confounding. Finally, additional infections might have occurred among asymptomatic exposed HCP who were not tested, or among HCP who were tested as a result of timing and limitations of nasopharyngeal and oropharyngeal specimen testing; serologic testing was not performed. To protect HCP caring for patients with suspected or confirmed COVID-19, health care facilities should continue to follow CDC, state, and local infection control and PPE guidance. Early recognition and prompt isolation, including source control, for patients with possible infection can help minimize unprotected and high-risk HCP exposures. These measures are crucial to protect HCP and preserve the health care workforce in the face of an outbreak already straining the U.S. health care system. Summary What is already known about this topic? Health care personnel (HCP) are at heightened risk of acquiring COVID-19 infection, but limited information exists about transmission in health care settings. What is added by this report? Among 121 HCP exposed to a patient with unrecognized COVID-19, 43 became symptomatic and were tested for SARS-CoV-2, of whom three had positive test results; all three had unprotected patient contact. Exposures while performing physical examinations or during nebulizer treatments were more common among HCP with COVID-19. What are the implications for public health practice? Unprotected, prolonged patient contact, as well as certain exposures, including some aerosol-generating procedures, were associated with SARS-CoV-2 infection in HCP. Early recognition and isolation of patients with possible infection and recommended PPE use can help minimize unprotected, high-risk HCP exposures and protect the health care workforce.
                Bookmark

                Author and article information

                Journal
                Ann Intern Med
                Ann Intern Med
                aim
                Annals of Internal Medicine
                American College of Physicians
                0003-4819
                1539-3704
                16 May 2023
                16 May 2023
                : M23-0570
                Affiliations
                [01]Pacific Northwest Evidence-based Practice Center and the Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon (R.C., T.D.).
                Author notes

                Disclosures: Disclosures can be viewed at www.acponline.org/authors/icmje/ConflictOfInterestForms.do?msNum=M23-0570.

                Reproducible Research Statement: Study protocol: The protocol for the original review is available at https://effectivehealthcare.ahrq.gov/products/masks-covid/protocol (includes the original protocol from 12 May 2020 and revisions published 2 July 2020). Subsequent protocol revisions have been documented in review updates. Statistical code: Not available (not applicable). Data set: Available on request from Dr. Chou (e-mail, chour@ 123456ohsu.edu ).
                Corresponding Author: Roger Chou, MD, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail Code BICC, Portland, OR 97239; e-mail, chour@ 123456ohsu.edu .
                Author Contributions: Conception and design: R. Chou, T. Dana.
                Analysis and interpretation of the data: R. Chou, T. Dana.
                Drafting of the article: R. Chou, T. Dana.
                Critical revision of the article for important intellectual content: R. Chou, T. Dana.
                Final approval of the article: R. Chou, T. Dana.
                Statistical expertise: R. Chou.
                Administrative, technical, or logistic support: T. Dana.
                Collection and assembly of data: R. Chou, T. Dana.
                Author information
                https://orcid.org/0000-0001-9889-8610
                Article
                aim-olf-M230570
                10.7326/M23-0570
                10234287
                37186920
                13f848d9-1d7f-4bd9-a97a-c73c07b51e0a
                Copyright @ 2023

                This article is made available via the PMC Open Access Subset for unrestricted re-use for research, analyses, and text and data mining through PubMed Central. Acknowledgement of the original source shall include a notice similar to the following: "© 2020 American College of Physicians. Some rights reserved. This work permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited." These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 53, Pages: 10, Words: 7054
                Categories
                Reviews
                3122457, COVID-19
                5414, Health care
                3124878, Infection control
                3123924, Personal protective equipment
                7426, Respirators
                2892, Systematic reviews
                early, Currently Online First
                coronavirus, Coronavirus Disease 2019 (COVID-19)
                poc-eligible, POC Eligible

                Comments

                Comment on this article