129
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Detection and localization of surgically resectable cancers with a multi-analyte blood test

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Earlier detection is key to reducing cancer deaths. Here we describe a blood test that can detect eight common cancer types through assessment of the levels of circulating proteins and mutations in cell-free DNA. We applied this test, called CancerSEEK, to 1,005 patients with non-metastatic, clinically detected cancers of the ovary, liver, stomach, pancreas, esophagus, colorectum, lung, or breast. CancerSEEK tests were positive in a median of 70% of the eight cancer types. The sensitivities ranged from 69% to 98% for the detection of five cancer types (ovary, liver, stomach, pancreas, and esophagus) for which there are no screening tests available for average-risk individuals. The specificity of CancerSEEK was > 99%: only 7 of 812 healthy controls scored positive. In addition, CancerSEEK localized the cancer to a small number of anatomic sites in a median of 83% of the patients.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Detection and quantification of rare mutations with massively parallel sequencing.

          The identification of mutations that are present in a small fraction of DNA templates is essential for progress in several areas of biomedical research. Although massively parallel sequencing instruments are in principle well suited to this task, the error rates in such instruments are generally too high to allow confident identification of rare variants. We here describe an approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose. The keys to this approach, called the Safe-Sequencing System ("Safe-SeqS"), are (i) assignment of a unique identifier (UID) to each template molecule, (ii) amplification of each uniquely tagged template molecule to create UID families, and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are considered mutant ("supermutants") only if ≥95% of them contain the identical mutation. We illustrate the utility of this approach for determining the fidelity of a polymerase, the accuracy of oligonucleotides synthesized in vitro, and the prevalence of mutations in the nuclear and mitochondrial genomes of normal cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative lesion sequencing provides insights into tumor evolution.

            We show that the times separating the birth of benign, invasive, and metastatic tumor cells can be determined by analysis of the mutations they have in common. When combined with prior clinical observations, these analyses suggest the following general conclusions about colorectal tumorigenesis: (i) It takes approximately 17 years for a large benign tumor to evolve into an advanced cancer but <2 years for cells within that cancer to acquire the ability to metastasize; (ii) it requires few, if any, selective events to transform a highly invasive cancer cell into one with the capacity to metastasize; (iii) the process of cell culture ex vivo does not introduce new clonal mutations into colorectal tumor cell populations; and (iv) the rates at which point mutations develop in advanced cancers are similar to those of normal cells. These results have important implications for understanding human tumor pathogenesis, particularly those associated with metastasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA.

              The ability to study nonhematologic cancers through noninvasive sampling of blood is one of the most exciting and rapidly advancing fields in cancer diagnostics. This has been driven both by major technologic advances, including the isolation of intact cancer cells and the analysis of cancer cell-derived DNA from blood samples, and by the increasing application of molecularly driven therapeutics, which rely on such accurate and timely measurements of critical biomarkers. Moreover, the dramatic efficacy of these potent cancer therapies drives the selection for additional genetic changes as tumors acquire drug resistance, necessitating repeated sampling of cancer cells to adjust therapy in response to tumor evolution. Together, these advanced noninvasive diagnostic capabilities and their applications in guiding precision cancer therapies are poised to change the ways in which we select and monitor cancer treatments. Recent advances in technologies to analyze circulating tumor cells and circulating tumor DNA are setting the stage for real-time, noninvasive monitoring of cancer and providing novel insights into cancer evolution, invasion, and metastasis. ©2014 American Association for Cancer Research.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                February 22 2018
                February 23 2018
                February 23 2018
                January 18 2018
                : 359
                : 6378
                : 926-930
                Article
                10.1126/science.aar3247
                6080308
                29348365
                1435c0df-bd36-4bc1-b993-c4d882f9e934
                © 2018

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article