21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ten Things You Might Not Know about Iron Oxide Nanoparticles

      research-article
      , MD, PhD
      Radiology
      Radiological Society of North America

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since ultrasmall superparamagnetic iron oxides (USPIOs) are not associated with a risk of nephrogenic sclerosis, they can serve as a safer contrast agents compared with gadolinium chelates for MR angiography, tissue perfusion studies, and atherosclerotic plaque and tumor imaging; USPIOs are especially beneficial for patients with renal insufficiency or patients with uncertain creatinine laboratory values.

          Abstract

          Amid mounting concerns about nephrogenic sclerosis and gadolinium deposition in the brain, physicians and patients alike are starting to question the use of gadolinium chelates for clinical magnetic resonance (MR) imaging. The search for safer alternatives is currently underway. In North America, the iron supplement ferumoxytol has gained considerable interest as an MR contrast agent. In Europe, ferumoxtran-10 is entering phase III clinical trials. As these agents are starting to be used by a new generation of radiologists, important clinical questions have re-emerged, including those that have been answered in the past. This article offers 10 important insights for the use of iron oxide nanoparticles in clinical MR imaging.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts.

          Nanoparticles in a biological fluid (plasma, or otherwise) associate with a range of biopolymers, especially proteins, organized into the "protein corona" that is associated with the nanoparticle and continuously exchanging with the proteins in the environment. Methodologies to determine the corona and to understand its dependence on nanomaterial properties are likely to become important in bionanoscience. Here, we study the long-lived ("hard") protein corona formed from human plasma for a range of nanoparticles that differ in surface properties and size. Six different polystyrene nanoparticles were studied: three different surface chemistries (plain PS, carboxyl-modified, and amine-modified) and two sizes of each (50 and 100 nm), enabling us to perform systematic studies of the effect of surface properties and size on the detailed protein coronas. Proteins in the corona that are conserved and unique across the nanoparticle types were identified and classified according to the protein functional properties. Remarkably, both size and surface properties were found to play a very significant role in determining the nanoparticle coronas on the different particles of identical materials. We comment on the future need for scientific understanding, characterization, and possibly some additional emphasis on standards for the surfaces of nanoparticles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Minimal "Self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles.

            Foreign particles and cells are cleared from the body by phagocytes that must also recognize and avoid clearance of "self" cells. The membrane protein CD47 is reportedly a "marker of self" in mice that impedes phagocytosis of self by signaling through the phagocyte receptor CD172a. Minimal "Self" peptides were computationally designed from human CD47 and then synthesized and attached to virus-size particles for intravenous injection into mice that express a CD172a variant compatible with hCD47. Self peptides delay macrophage-mediated clearance of nanoparticles, which promotes persistent circulation that enhances dye and drug delivery to tumors. Self-peptide affinity for CD172a is near the optimum measured for human CD172a variants, and Self peptide also potently inhibits nanoparticle uptake mediated by the contractile cytoskeleton. The reductionist approach reveals the importance of human Self peptides and their utility in enhancing drug delivery and imaging.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis.

              In biological fluids, proteins associate with nanoparticles, leading to a protein "corona" defining the biological identity of the particle. However, a comprehensive knowledge of particle-guided protein fingerprints and their dependence on nanomaterial properties is incomplete. We studied the long-lived ("hard") blood plasma derived corona on monodispersed amorphous silica nanoparticles differing in size (20, 30, and 100 nm). Employing label-free liquid chromatography mass spectrometry, one- and two-dimensional gel electrophoresis, and immunoblotting the composition of the protein corona was analyzed not only qualitatively but also quantitatively. Detected proteins were bioinformatically classified according to their physicochemical and biological properties. Binding of the 125 identified proteins did not simply reflect their relative abundance in the plasma but revealed an enrichment of specific lipoproteins as well as proteins involved in coagulation and the complement pathway. In contrast, immunoglobulins and acute phase response proteins displayed a lower affinity for the particles. Protein decoration of the negatively charged particles did not correlate with protein size or charge, demonstrating that electrostatic effects alone are not the major driving force regulating the nanoparticle-protein interaction. Remarkably, even differences in particle size of only 10 nm significantly determined the nanoparticle corona, although no clear correlation with particle surface volume, protein size, or charge was evident. Particle size quantitatively influenced the particle's decoration with 37% of all identified proteins, including (patho)biologically relevant candidates. We demonstrate the complexity of the plasma corona and its still unresolved physicochemical regulation, which need to be considered in nanobioscience in the future. © 2011 American Chemical Society
                Bookmark

                Author and article information

                Contributors
                Journal
                Radiology
                Radiology
                Radiology
                Radiology
                Radiological Society of North America
                0033-8419
                1527-1315
                September 2017
                21 August 2017
                : 284
                : 3
                : 616-629
                Affiliations
                [1]From the Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Department of Pediatrics, and Institute for Stem Cell Biology and Regenerative Medicine, Lucile Packard Children’s Hospital, Stanford University, 725 Welch Rd, Room 1665, Stanford, CA 94305-5614.
                Author notes
                Address correspondence to the author (e-mail: H.E.Daldrup-Link@ 123456stanford.edu ).
                Article
                162759
                10.1148/radiol.2017162759
                5584668
                28825888
                14525660-7e2a-488b-84f9-f9a221f29334
                2017 by the Radiological Society of North America, Inc.

                Published under a CC BY-NC-ND 4.0 license.

                History
                Funding
                Funded by: Eunice Kennedy Shriver National Institute of Child Health and Human Development http://dx.doi.org/10.13039/100009633
                Award ID: 5HD081123
                Funded by: National Cancer Institute http://dx.doi.org/10.13039/100000054
                Award ID: R21CA190196
                Award ID: R21CA176519
                Funded by: National Institute of Arthritis and Musculoskeletal and Skin Diseases http://dx.doi.org/10.13039/100000069
                Award ID: 4R01AR054458-09
                Award ID: R21AR066302
                Categories
                Reviews and Commentary
                Review
                MR, Magnetic Resonance Imaging
                MI, Molecular Imaging
                Custom metadata
                yes

                Comments

                Comment on this article