13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Resolution enhancement using plasmonic metamask for wafer-scale photolithography in the far field

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resolution enhancement in far-field photolithography is demonstrated using a plasmonic metamask in the proximity regime, in which Fresnel diffraction is dominant. The transverse magnetic component of the diffracted wave from the photomask, which reduces the pattern visibility and lowers the resolution, was successfully controlled by coupling with the anti-symmetric mode of the excited surface plasmon. We obtained a consistently finely-patterned photoresist surface at a distance of up to 15 μm from the mask surface for 3-μm-pitch slits because of conserved field visibility when propagating from the near-field to the proximity regime. We confirmed that sharp edge patterning is indeed possible when using a wafer-scale photomask in the proximity photolithography regime. Our plasmonic metamask method produces cost savings for ultra-large-scale high-density display fabrication by maintaining longer photomask lifetimes and by allowing sufficient tolerance for the distance between the photomask and the photoresist.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: not found

          Optical properties of metallic films for vertical-cavity optoelectronic devices.

          We present models for the optical functions of 11 metals used as mirrors and contacts in optoelectronic and optical devices: noble metals (Ag, Au, Cu), aluminum, beryllium, and transition metals (Cr, Ni, Pd, Pt, Ti, W). We used two simple phenomenological models, the Lorentz-Drude (LD) and the Brendel-Bormann (BB), to interpret both the free-electron and the interband parts of the dielectric response of metals in a wide spectral range from 0.1 to 6 eV. Our results show that the BB model was needed to describe appropriately the interband absorption in noble metals, while for Al, Be, and the transition metals both models exhibit good agreement with the experimental data. A comparison with measurements on surface normal structures confirmed that the reflectance and the phase change on reflection from semiconductor-metal interfaces (including the case of metallic multilayers) can be accurately described by use of the proposed models for the optical functions of metallic films and the matrix method for multilayer calculations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Negative refraction makes a perfect lens

            With a conventional lens sharpness of the image is always limited by the wavelength of light. An unconventional alternative to a lens, a slab of negative refractive index material, has the power to focus all Fourier components of a 2D image, even those that do not propagate in a radiative manner. Such "superlenses" can be realized in the microwave band with current technology. Our simulations show that a version of the lens operating at the frequency of visible light can be realized in the form of a thin slab of silver. This optical version resolves objects only a few nanometers across.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Freeform lens arrays for off-axis illumination in an optical lithography system.

              We propose a method of designing a freeform lens array for off-axis illumination (OAI) in optical lithography to produce desired OAI patterns and improve efficiency. Based on the Snell law and the conservation law of energy, a set of first-order partial differential equations are derived and the coordinate relations for each OAI pattern are established. The contours of the freeform lens unit are calculated numerically by solving the partial differential equations, and the freeform lens array is obtained by arraying the lens units. Moreover, the optical performance for each OAI pattern is simulated and analyzed by software. Simulation results show that the irradiance distribution of each OAI pattern can be well controlled with a maximum uniformity of 92.45% and a maximum efficiency of 99.35%. Also, analysis indicates that this method has the advantages of reducing the complexity of the exposure system and having good tolerance to the input intensity variations of the laser beam.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                26 July 2016
                2016
                : 6
                : 30476
                Affiliations
                [1 ]School of Mechanical Engineering, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
                [2 ]Display R&D Center, Samsung Display Co. Ltd. , Yongin City, Gyeonggi-do 17113, Republic of Korea
                [3 ]Samsung Advanced Institute of Technology , Suwon-si, Gyeonggi-do 16678, Republic of Korea
                Author notes
                Article
                srep30476
                10.1038/srep30476
                4960539
                27457127
                145d9f07-a80b-4a07-8c74-8456704f3812
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 18 May 2016
                : 05 July 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article