22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Productivity of wheat is affected by drought stress; however, the correlation between drought stress and metabolism is still not clear. The aim of this study was to investigate physiological adaptive mechanisms and reveal physiological processes related to drought tolerance. The results indicated that the wheat metabolome is dominated by sugars, organic acids and amino acids; the wheat metabolome plays important roles in enhancing the drought tolerance of shoots. Drought caused system alterations in widespread metabolic networks involving transamination, tricarboxylic acid cycle, glycolysis, glutamate-mediated proline biosynthesis, shikimate-mediated secondary metabolisms and GABA metabolisms.

          Abstract

          An in-depth understanding of the effects of drought stress on plant metabolism is necessary to improve the drought tolerance of wheat and to utilize genetic resources for the development of drought stress-tolerant wheat varieties. In this study, the profiles of 58 key metabolites produced by wheat seedlings in response to drought stress were investigated to determine various physiological processes related to drought tolerance between drought-tolerant and drought-sensitive wheat genotypes. Results showed that the wheat metabolome was dominated by sugars, organic acids and amino acids; the wheat metabolome played important roles to enhance the drought tolerance of shoots. Under drought stress, JD17 exhibited higher growth indices and higher photosynthesis ability than JD8. A high level of compatible solutes and energy in shoots were essential for wheat to develop drought tolerance. Drought also caused system alterations in widespread metabolic networks involving transamination, tricarboxylic acid cycle, glycolysis, glutamate-mediated proline biosynthesis, shikimate-mediated secondary metabolisms and γ-aminobutyric acid metabolisms. Long-term drought stress resulted in the drought-tolerant wheat genotype JD17, which induced metabolic shifts in the tricarboxylic acid cycle and glycolysis with the depletion of the γ-aminobutyric acid shut process. In JD17, the prolonged drought stress induced a progressive accumulation of osmolytes, including proline, sucrose, fructose, mannose and malic acid. This research extended our understanding of the mechanisms involved in wheat seedling drought tolerance; this study also demonstrated that gas chromatography–mass spectrometry metabolomics could be an effective approach to understand the drought effects on plant biochemistry.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: not found
          • Article: not found

          COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS.

          D ARNON (1949)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis

            First released in 2009, MetaboAnalyst (www.metaboanalyst.ca) was a relatively simple web server designed to facilitate metabolomic data processing and statistical analysis. With continuing advances in metabolomics along with constant user feedback, it became clear that a substantial upgrade to the original server was necessary. MetaboAnalyst 2.0, which is the successor to MetaboAnalyst, represents just such an upgrade. MetaboAnalyst 2.0 now contains dozens of new features and functions including new procedures for data filtering, data editing and data normalization. It also supports multi-group data analysis, two-factor analysis as well as time-series data analysis. These new functions have also been supplemented with: (i) a quality-control module that allows users to evaluate their data quality before conducting any analysis, (ii) a functional enrichment analysis module that allows users to identify biologically meaningful patterns using metabolite set enrichment analysis and (iii) a metabolic pathway analysis module that allows users to perform pathway analysis and visualization for 15 different model organisms. In developing MetaboAnalyst 2.0 we have also substantially improved its graphical presentation tools. All images are now generated using anti-aliasing and are available over a range of resolutions, sizes and formats (PNG, TIFF, PDF, PostScript, or SVG). To improve its performance, MetaboAnalyst 2.0 is now hosted on a much more powerful server with substantially modified code to take advantage the server’s multi-core CPUs for computationally intensive tasks. MetaboAnalyst 2.0 also maintains a collection of 50 or more FAQs and more than a dozen tutorials compiled from user queries and requests. A downloadable version of MetaboAnalyst 2.0, along detailed instructions for local installation is now available as well.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Proline biosynthesis and osmoregulation in plants

                Bookmark

                Author and article information

                Journal
                AoB Plants
                AoB Plants
                aobpla
                AoB Plants
                Oxford University Press (US )
                2041-2851
                April 2018
                01 March 2018
                01 March 2018
                : 10
                : 2
                : ply016
                Affiliations
                [1 ]Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, P.R. China
                [2 ]School of Life Sciences, Northeast Normal University, Changchun, China
                Author notes

                These authors have contributed equally to this work.

                Corresponding author’s e-mail address: guor219@ 123456yahoo.com ; lianxuanshi@ 123456nenu.edu.cn
                Article
                ply016
                10.1093/aobpla/ply016
                5881611
                29623182
                14c37ae7-ade4-4c46-832f-e67c3f7dec64
                © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 13
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 31570328
                Award ID: 31200243
                Funded by: National High-Tech R & D Program
                Award ID: 2011AA100503
                Funded by: the basic research special fund operations
                Award ID: BSRF201201
                Funded by: National ‘Twelfth Five-Year’ Plan for Science & Technology
                Award ID: 2011BAD09B01
                Categories
                Research Article

                Plant science & Botany
                drought stress,growth,metabolites,photosynthesis indices,wheat
                Plant science & Botany
                drought stress, growth, metabolites, photosynthesis indices, wheat

                Comments

                Comment on this article