5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacterial lipopolysaccharide-induced endothelial activation and dysfunction: a new predictive and therapeutic paradigm for sepsis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Lipopolysaccharide, a highly potent endotoxin responsible for severe sepsis, is the major constituent of the outer membrane of gram-negative bacteria. Endothelial cells participate in both innate and adaptive immune responses as the first cell types to detect lipopolysaccharide or other foreign debris in the bloodstream. Endothelial cells are able to recognize the presence of LPS and recruit specific adaptor proteins to the membrane domains of TLR4, thereby initiating an intracellular signaling cascade. However, lipopolysaccharide binding to endothelial cells induces endothelial activation and even damage, manifested by the expression of proinflammatory cytokines and adhesion molecules that lead to sepsis.

          Main findings

          LPS is involved in both local and systemic inflammation, activating both innate and adaptive immunity. Translocation of lipopolysaccharide into the circulation causes endotoxemia. Endothelial dysfunction, including exaggerated inflammation, coagulopathy and vascular leakage, may play a central role in the dysregulated host response and pathogenesis of sepsis. By discussing the many strategies used to treat sepsis, this review attempts to provide an overview of how lipopolysaccharide induces the ever more complex syndrome of sepsis and the potential for the development of novel sepsis therapeutics.

          Conclusions

          To reduce patient morbidity and mortality, preservation of endothelial function would be central to the management of sepsis.

          Graphical Abstract

          Related collections

          Most cited references156

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine

          Abstract Background Vaccines are needed to prevent coronavirus disease 2019 (Covid-19) and to protect persons who are at high risk for complications. The mRNA-1273 vaccine is a lipid nanoparticle–encapsulated mRNA-based vaccine that encodes the prefusion stabilized full-length spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes Covid-19. Methods This phase 3 randomized, observer-blinded, placebo-controlled trial was conducted at 99 centers across the United States. Persons at high risk for SARS-CoV-2 infection or its complications were randomly assigned in a 1:1 ratio to receive two intramuscular injections of mRNA-1273 (100 μg) or placebo 28 days apart. The primary end point was prevention of Covid-19 illness with onset at least 14 days after the second injection in participants who had not previously been infected with SARS-CoV-2. Results The trial enrolled 30,420 volunteers who were randomly assigned in a 1:1 ratio to receive either vaccine or placebo (15,210 participants in each group). More than 96% of participants received both injections, and 2.2% had evidence (serologic, virologic, or both) of SARS-CoV-2 infection at baseline. Symptomatic Covid-19 illness was confirmed in 185 participants in the placebo group (56.5 per 1000 person-years; 95% confidence interval [CI], 48.7 to 65.3) and in 11 participants in the mRNA-1273 group (3.3 per 1000 person-years; 95% CI, 1.7 to 6.0); vaccine efficacy was 94.1% (95% CI, 89.3 to 96.8%; P<0.001). Efficacy was similar across key secondary analyses, including assessment 14 days after the first dose, analyses that included participants who had evidence of SARS-CoV-2 infection at baseline, and analyses in participants 65 years of age or older. Severe Covid-19 occurred in 30 participants, with one fatality; all 30 were in the placebo group. Moderate, transient reactogenicity after vaccination occurred more frequently in the mRNA-1273 group. Serious adverse events were rare, and the incidence was similar in the two groups. Conclusions The mRNA-1273 vaccine showed 94.1% efficacy at preventing Covid-19 illness, including severe disease. Aside from transient local and systemic reactions, no safety concerns were identified. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; COVE ClinicalTrials.gov number, NCT04470427.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19

            Coronavirus disease 2019 (COVID-19) is a clinical syndrome caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with severe disease show hyperactivation of the immune system, which can affect multiple organs besides the lungs. Here, we propose that SARS-CoV-2 infection induces a process known as immunothrombosis, in which activated neutrophils and monocytes interact with platelets and the coagulation cascade, leading to intravascular clot formation in small and larger vessels. Microthrombotic complications may contribute to acute respiratory distress syndrome (ARDS) and other organ dysfunctions. Therapeutic strategies aimed at reducing immunothrombosis may therefore be useful. Several antithrombotic and immunomodulating drugs have been proposed as candidates to treat patients with SARS-CoV-2 infection. The growing understanding of SARS-CoV-2 infection pathogenesis and how it contributes to critical illness and its complications may help to improve risk stratification and develop targeted therapies to reduce the acute and long-term consequences of this disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Vascular Endothelial Cell Biology: An Update

              The vascular endothelium, a monolayer of endothelial cells (EC), constitutes the inner cellular lining of arteries, veins and capillaries and therefore is in direct contact with the components and cells of blood. The endothelium is not only a mere barrier between blood and tissues but also an endocrine organ. It actively controls the degree of vascular relaxation and constriction, and the extravasation of solutes, fluid, macromolecules and hormones, as well as that of platelets and blood cells. Through control of vascular tone, EC regulate the regional blood flow. They also direct inflammatory cells to foreign materials, areas in need of repair or defense against infections. In addition, EC are important in controlling blood fluidity, platelet adhesion and aggregation, leukocyte activation, adhesion, and transmigration. They also tightly keep the balance between coagulation and fibrinolysis and play a major role in the regulation of immune responses, inflammation and angiogenesis. To fulfill these different tasks, EC are heterogeneous and perform distinctly in the various organs and along the vascular tree. Important morphological, physiological and phenotypic differences between EC in the different parts of the arterial tree as well as between arteries and veins optimally support their specified functions in these vascular areas. This review updates the current knowledge about the morphology and function of endothelial cells, particularly their differences in different localizations around the body paying attention specifically to their different responses to physical, biochemical and environmental stimuli considering the different origins of the EC.
                Bookmark

                Author and article information

                Contributors
                wangmin111918@163.com
                andyterry555@163.com
                zdx9599@sina.com
                harry107@163.com
                Journal
                Eur J Med Res
                Eur J Med Res
                European Journal of Medical Research
                BioMed Central (London )
                0949-2321
                2047-783X
                12 September 2023
                12 September 2023
                2023
                : 28
                : 339
                Affiliations
                [1 ]GRID grid.412793.a, ISNI 0000 0004 1799 5032, Department of Emergency Medicine, , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, ; 1095 JieFang Avenue, Wuhan, 430030 Hubei People’s Republic of China
                [2 ]GRID grid.412793.a, ISNI 0000 0004 1799 5032, Department of Critical Care Medicine, , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, ; 1095 JieFang Avenue, Wuhan, 430030 Hubei People’s Republic of China
                Article
                1301
                10.1186/s40001-023-01301-5
                10498524
                37700349
                14ce311e-948a-4d80-9e4e-db22e2590f77
                © BioMed Central Ltd., part of Springer Nature 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 11 July 2023
                : 18 August 2023
                Funding
                Funded by: Natural Science Foundation of Hubei Province
                Award ID: 2021CFB026
                Award ID: 2022CFB148
                Award Recipient :
                Categories
                Review
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2023

                Medicine
                lipopolysaccharide,tlr4,endothelial cells,sepsis
                Medicine
                lipopolysaccharide, tlr4, endothelial cells, sepsis

                Comments

                Comment on this article