19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of a rapid recombinase polymerase amplification assay for the detection of Streptococcus pneumoniae in whole blood

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Streptococcus pneumoniae is an important cause of microbial disease in humans. The introduction of multivalent vaccines has coincided with a dramatic decrease in the number of pneumococcal-related deaths. In spite of this, at a global level, pneumococcal infection remains an important cause of death among children under 5 years of age and in adults 65 years of age or older. In order to properly manage patients and control the spread of infection, a rapid and highly sensitive diagnostic method is needed for routine implementation, especially in resource-limited regions where pneumococcal disease is most prevalent.

          Methods

          Using the gene encoding leader peptidase A as a molecular diagnostics target, a real-time RPA assay was designed and optimised for the detection of S. pneumoniae in whole blood. The performance of the assay was compared to real-time PCR in terms of its analytical limit of detection and specificity. The inhibitory effect of human genomic DNA on amplification was investigated. The potential clinical utility of the assay was investigated using a small number of clinical samples.

          Results

          The RPA assay has a limit of detection equivalent to PCR (4.0 and 5.1 genome equivalents per reaction, respectively) and was capable of detecting the equivalent of <1 colony forming unit of S. pneumoniae when spiked into human whole blood. The RPA assay was 100 % inclusive (38/38 laboratory reference strains and 19/19 invasive clinical isolates) and 100 % exclusive; differentiating strains of S. pneumoniae species from other viridans group streptococci, including S. pseudopneumoniae. When applied to the analysis of a small number ( n = 11) of clinical samples (blood culture positive for S. pneumoniae), the RPA assay was demonstrated to be both rapid and sensitive.

          Conclusions

          The RPA assay developed in this work is shown to be as sensitive and as specific as PCR. In terms of reaction kinetics, the RPA assay is shown to exceed those of the PCR, with the RPA running to completion in 20 minutes and capable generating a positive signal in as little as 6 minutes. This work represents a potentially suitable assay for application in point-of-care settings.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine.

          Changes in invasive pneumococcal disease (IPD) incidence were evaluated after 7 years of 7-valent pneumococcal conjugate vaccine (PCV7) use in US children. Laboratory-confirmed IPD cases were identified during 1998-2007 by 8 active population-based surveillance sites. We compared overall, age group-specific, syndrome-specific, and serotype group-specific IPD incidence in 2007 with that in 1998-1999 (before PCV7) and assessed potential serotype coverage of new conjugate vaccine formulations. Overall and PCV7-type IPD incidence declined by 45% (from 24.4 to 13.5 cases per 100,000 population) and 94% (from 15.5 to 1.0 cases per 100,000 population), respectively (P< .01 all age groups). The incidence of IPD caused by serotype 19A and other non-PCV7 types increased from 0.8 to 2.7 cases per 100,000 population and from 6.1 to 7.9 cases per 100,000 population, respectively (P< .01 for all age groups). The rates of meningitis and invasive pneumonia caused by non-PCV7 types increased for all age groups (P< .05), whereas the rates of primary bacteremia caused by these serotypes did not change. In 2006-2007, PCV7 types caused 2% of IPD cases, and the 6 additional serotypes included in an investigational 13-valent conjugate vaccine caused 63% of IPD cases among children <5 years-old. Dramatic reductions in IPD after PCV7 introduction in the United States remain evident 7 years later. IPD rates caused by serotype 19A and other non-PCV7 types have increased but remain low relative to decreases in PCV7-type IPD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nucleic acid sequence-based amplification.

            J. Compton (1991)
            Nucleic acid sequence-based amplification (NASBA) is a primer-dependent technology that can be used for the continuous amplification of nucleic acids in a single mixture at one temperature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutation detection and single-molecule counting using isothermal rolling-circle amplification.

              Rolling-circle amplification (RCA) driven by DNA polymerase can replicate circularized oligonucleotide probes with either linear or geometric kinetics under isothermal conditions. In the presence of two primers, one hybridizing to the + strand, and the other, to the - strand of DNA, a complex pattern of DNA strand displacement ensues that generates 10(9) or more copies of each circle in 90 minutes, enabling detection of point mutations in human genomic DNA. Using a single primer, RCA generates hundreds of tandemly linked copies of a covalently closed circle in a few minutes. If matrix-associated, the DNA product remains bound at the site of synthesis, where it may be tagged, condensed and imaged as a point light source. Linear oligonucleotide probes bound covalently on a glass surface can generate RCA signals, the colour of which indicates the allele status of the target, depending on the outcome of specific, target-directed ligation events. As RCA permits millions of individual probe molecules to be counted and sorted using colour codes, it is particularly amenable for the analysis of rare somatic mutations. RCA also shows promise for the detection of padlock probes bound to single-copy genes in cytological preparations.
                Bookmark

                Author and article information

                Contributors
                eoin.clancy@nuigalway.ie
                owen.higgins@nuigalway.ie
                M.Forrest@TWISTDx.co.uk
                teckwee.boo@nuigalway.ie
                martin.cormican@nuigalway.ie
                thomas.barry@nuigalway.ie
                O.Piepenburg@TWISTDx.co.uk
                terry.smith@nuigalway.ie
                Journal
                BMC Infect Dis
                BMC Infect. Dis
                BMC Infectious Diseases
                BioMed Central (London )
                1471-2334
                29 October 2015
                29 October 2015
                2015
                : 15
                : 481
                Affiliations
                [ ]Molecular Diagnostics Research Group, School of Natural Sciences, National University of Ireland, Galway, Ireland
                [ ]Biomedical Diagnostics Institute Programme, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
                [ ]TwistDx Limited, Cambridge, United Kingdom
                [ ]School of Medicine, National University of Ireland , Galway, Ireland
                [ ]Nucleic Acids Diagnostics Research Laboratory, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
                Article
                1212
                10.1186/s12879-015-1212-5
                4625855
                26515409
                156b1f77-bbd3-414f-afd5-fa43deae832b
                © Clancy et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 30 March 2015
                : 13 October 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Infectious disease & Microbiology
                streptococcus pneumoniae,recombinase polymerase amplification,leader peptidase a,molecular diagnostics

                Comments

                Comment on this article