10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Considerations for Conducting Bring Your Own “Device” (BYOD) Clinical Studies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Digital health technologies are attracting attention as novel tools for data collection in clinical research. They present alternative methods compared to in-clinic data collection, which often yields snapshots of the participants' physiology, behavior, and function that may be prone to biases and artifacts, e.g., white coat hypertension, and not representative of the data in free-living conditions. Modern digital health technologies equipped with multi-modal sensors combine different data streams to derive comprehensive endpoints that are important to study participants and are clinically meaningful. Used for data collection in clinical trials, they can be deployed as provisioned products where technology is given at study start or in a bring your own “device” (BYOD) manner where participants use their technologies to generate study data.

          Summary

          The BYOD option has the potential to be more user-friendly, allowing participants to use technologies that they are familiar with, ensuring better participant compliance, and potentially reducing the bias that comes with introducing new technologies. However, this approach presents different technical, operational, regulatory, and ethical challenges to study teams. For example, BYOD data can be more heterogeneous, and recruiting historically underrepresented populations with limited access to technology and the internet can be challenging. Despite the rapid increase in digital health technologies for clinical and healthcare research, BYOD use in clinical trials is limited, and regulatory guidance is still evolving.

          Key Messages

          We offer considerations for academic researchers, drug developers, and patient advocacy organizations on the design and deployment of BYOD models in clinical research. These considerations address: (1) early identification and engagement with internal and external stakeholders; (2) study design including informed consent and recruitment strategies; (3) outcome, endpoint, and technology selection; (4) data management including compliance and data monitoring; (5) statistical considerations to meet regulatory requirements. We believe that this article acts as a primer, providing insights into study design and operational requirements to ensure the successful implementation of BYOD clinical studies.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Systematic review of the Hawthorne effect: New concepts are needed to study research participation effects☆

          Objectives This study aims to (1) elucidate whether the Hawthorne effect exists, (2) explore under what conditions, and (3) estimate the size of any such effect. Study Design and Setting This systematic review summarizes and evaluates the strength of available evidence on the Hawthorne effect. An inclusive definition of any form of research artifact on behavior using this label, and without cointerventions, was adopted. Results Nineteen purposively designed studies were included, providing quantitative data on the size of the effect in eight randomized controlled trials, five quasiexperimental studies, and six observational evaluations of reporting on one's behavior by answering questions or being directly observed and being aware of being studied. Although all but one study was undertaken within health sciences, study methods, contexts, and findings were highly heterogeneous. Most studies reported some evidence of an effect, although significant biases are judged likely because of the complexity of the evaluation object. Conclusion Consequences of research participation for behaviors being investigated do exist, although little can be securely known about the conditions under which they operate, their mechanisms of effects, or their magnitudes. New concepts are needed to guide empirical studies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Racial Bias in Pulse Oximetry Measurement

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wearable sensor data and self-reported symptoms for COVID-19 detection

              Traditional screening for COVID-19 typically includes survey questions about symptoms and travel history, as well as temperature measurements. Here, we explore whether personal sensor data collected over time may help identify subtle changes indicating an infection, such as in patients with COVID-19. We have developed a smartphone app that collects smartwatch and activity tracker data, as well as self-reported symptoms and diagnostic testing results, from individuals in the United States, and have assessed whether symptom and sensor data can differentiate COVID-19 positive versus negative cases in symptomatic individuals. We enrolled 30,529 participants between 25 March and 7 June 2020, of whom 3,811 reported symptoms. Of these symptomatic individuals, 54 reported testing positive and 279 negative for COVID-19. We found that a combination of symptom and sensor data resulted in an area under the curve (AUC) of 0.80 (interquartile range (IQR): 0.73-0.86) for discriminating between symptomatic individuals who were positive or negative for COVID-19, a performance that is significantly better (P < 0.01) than a model1 that considers symptoms alone (AUC = 0.71; IQR: 0.63-0.79). Such continuous, passively captured data may be complementary to virus testing, which is generally a one-off or infrequent sampling assay.
                Bookmark

                Author and article information

                Journal
                Digit Biomark
                Digit Biomark
                DIB
                Digital Biomarkers
                S. Karger AG (Allschwilerstrasse 10, P.O. Box · Postfach · Case postale, CH–4009, Basel, Switzerland · Schweiz · Suisse, Phone: +41 61 306 11 11, Fax: +41 61 306 12 34, karger@karger.com )
                2504-110X
                May-Aug 2022
                4 July 2022
                4 July 2022
                : 6
                : 2
                : 47-60
                Affiliations
                [1] aPfizer Inc, Cambridge, Massachusetts, USA
                [2] bMcMaster University, Hamilton, Ontario, Canada
                [3] cPhilips Sleep and Respiratory Care, Monroeville, Pennsylvania, USA
                [4] dThe Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
                [5] ePatient and Partners LLC, Madison, Connecticut, USA
                [6] fGlobal Medical Analytics and Real-World Evidence, Viatris Inc, Canonsburg, Pennsylvania, USA
                [7] gKoneksa Health, New York, New York, USA
                [8] hNovartis Ireland Ltd., Dublin, Ireland
                Author notes
                Article
                dib-0006-0047
                10.1159/000525080
                9294934
                35949223
                15ae6b00-2641-419d-b701-8aec067a98d7
                Copyright © 2022 by The Author(s). Published by S. Karger AG, Basel

                This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC). Usage and distribution for commercial purposes requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 5 November 2021
                : 7 April 2022
                : 2022
                Page count
                Figures: 2, Tables: 4, References: 75, Pages: 14
                Categories
                Tools and Devices - Review Article

                bring your own device,byod,digital health technology,dht,patient-generated health data,biosensors

                Comments

                Comment on this article