7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Neurobiological and Systemic Effects of Chronic Stress

      1
      Chronic Stress
      SAGE Publications

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Neighborhoods and health.

          Features of neighborhoods or residential environments may affect health and contribute to social and race/ethnic inequalities in health. The study of neighborhood health effects has grown exponentially over the past 15 years. This chapter summarizes key work in this area with a particular focus on chronic disease outcomes (specifically obesity and related risk factors) and mental health (specifically depression and depressive symptoms). Empirical work is classified into two main eras: studies that use census proxies and studies that directly measure neighborhood attributes using a variety of approaches. Key conceptual and methodological challenges in studying neighborhood health effects are reviewed. Existing gaps in knowledge and promising new directions in the field are highlighted.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission.

            Mounting evidence suggests that acute and chronic stress, especially the stress-induced release of glucocorticoids, induces changes in glutamate neurotransmission in the prefrontal cortex and the hippocampus, thereby influencing some aspects of cognitive processing. In addition, dysfunction of glutamatergic neurotransmission is increasingly considered to be a core feature of stress-related mental illnesses. Recent studies have shed light on the mechanisms by which stress and glucocorticoids affect glutamate transmission, including effects on glutamate release, glutamate receptors and glutamate clearance and metabolism. This new understanding provides insights into normal brain functioning, as well as the pathophysiology and potential new treatments of stress-related neuropsychiatric disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation.

              Two receptor systems for corticosterone (CORT) can be distinguished in rat brain: mineralocorticoid-like or CORT receptors (CR) and glucocorticoid receptors (GR). The microdistribution and extent of occupation of each receptor population by CORT were studied. The CR system is restricted predominantly to the lateral septum and hippocampus. Within the hippocampus, the highest density occurs in the subiculum +/- CA1 cell field (144 fmol/mg protein) and the dentate gyrus (104 fmol/mg protein). Affinity of CR for CORT was very high (Kd, approximately 0.5 nM). The GR system has a more widespread distribution in the brain. The highest density for GR is in the lateral septum (195 fmol/mg protein), the dentate gyrus (133 fmol/mg protein), the nucleus tractus solitarii and central amygdala. Substantial amounts of GR are present in the paraventricular nucleus and locus coeruleus and low amounts in the raphe area and the subiculum + CA1 cell field. The affinity of GR for CORT (Kd, approximately 2.5-5 nM) was 6- to 10-fold lower than that of CR. Occupation of CR by endogenous ligand was 89.5% during morning trough levels of pituitary-adrenal activity (plasma CORT, 1.4 micrograms/100 ml). Similar levels of occupation (88.7% and 97.6%) were observed at the diurnal peak (plasma CORT, 27 micrograms/100 ml) and after 1 h of restraint stress (plasma CORT, 25 micrograms/100 ml), respectively. Furthermore, a dose of 1 microgram CORT/100 g BW, sc, resulted in 80% CORT receptor occupation, whereas GR were not occupied. For 50% occupation of GR, doses needed to be increased to 50-100 micrograms/100 g BW, and for 95% occupation, a dose of 1 mg CORT was required. The plasma CORT level at the time of half-maximal GR occupation was about 25 micrograms/100 ml, which is in the range of levels attained after stress or during the diurnal peak of pituitary-adrenal activity. Thus, CR are extensively filled (greater than 90%) with endogenous CORT under most circumstances, while GR become occupied concurrent with increasing plasma CORT concentrations due to stress or diurnal rhythm. We conclude that CORT action via CR may be involved in a tonic (permissive) influence on brain function with the septohippocampal complex as a primary target. In view of the almost complete occupation of CR by endogenous hormones, the regulation of the CORT signal via CR will, most likely, be by alterations in the number of such receptors. In contrast, CORT action via GR is involved in its feedback action on stress-activated brain mechanisms, and GR occur widely in the brain.(ABSTRACT TRUNCATED AT 400 WORDS)
                Bookmark

                Author and article information

                Journal
                Chronic Stress
                Chronic Stress
                SAGE Publications
                2470-5470
                2470-5470
                February 17 2017
                January 2017
                April 10 2017
                January 2017
                : 1
                : 247054701769232
                Affiliations
                [1 ]Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
                Article
                10.1177/2470547017692328
                15b9857f-4f4c-4722-8aa2-3c85250c9018
                © 2017

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article