12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Island tameness: living on islands reduces flight initiation distance

      , ,
      Proceedings of the Royal Society B: Biological Sciences
      The Royal Society

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Testing for phylogenetic signal in comparative data: behavioral traits are more labile.

          The primary rationale for the use of phylogenetically based statistical methods is that phylogenetic signal, the tendency for related species to resemble each other, is ubiquitous. Whether this assertion is true for a given trait in a given lineage is an empirical question, but general tools for detecting and quantifying phylogenetic signal are inadequately developed. We present new methods for continuous-valued characters that can be implemented with either phylogenetically independent contrasts or generalized least-squares models. First, a simple randomization procedure allows one to test the null hypothesis of no pattern of similarity among relatives. The test demonstrates correct Type I error rate at a nominal alpha = 0.05 and good power (0.8) for simulated datasets with 20 or more species. Second, we derive a descriptive statistic, K, which allows valid comparisons of the amount of phylogenetic signal across traits and trees. Third, we provide two biologically motivated branch-length transformations, one based on the Ornstein-Uhlenbeck (OU) model of stabilizing selection, the other based on a new model in which character evolution can accelerate or decelerate (ACDC) in rate (e.g., as may occur during or after an adaptive radiation). Maximum likelihood estimation of the OU (d) and ACDC (g) parameters can serve as tests for phylogenetic signal because an estimate of d or g near zero implies that a phylogeny with little hierarchical structure (a star) offers a good fit to the data. Transformations that improve the fit of a tree to comparative data will increase power to detect phylogenetic signal and may also be preferable for further comparative analyses, such as of correlated character evolution. Application of the methods to data from the literature revealed that, for trees with 20 or more species, 92% of traits exhibited significant phylogenetic signal (randomization test), including behavioral and ecological ones that are thought to be relatively evolutionarily malleable (e.g., highly adaptive) and/or subject to relatively strong environmental (nongenetic) effects or high levels of measurement error. Irrespective of sample size, most traits (but not body size, on average) showed less signal than expected given the topology, branch lengths, and a Brownian motion model of evolution (i.e., K was less than one), which may be attributed to adaptation and/or measurement error in the broad sense (including errors in estimates of phenotypes, branch lengths, and topology). Analysis of variance of log K for all 121 traits (from 35 trees) indicated that behavioral traits exhibit lower signal than body size, morphological, life-history, or physiological traits. In addition, physiological traits (corrected for body size) showed less signal than did body size itself. For trees with 20 or more species, the estimated OU (25% of traits) and/or ACDC (40%) transformation parameter differed significantly from both zero and unity, indicating that a hierarchical tree with less (or occasionally more) structure than the original better fit the data and so could be preferred for comparative analyses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fear in animals: a meta-analysis and review of risk assessment.

            The amount of risk animals perceive in a given circumstance (i.e. their degree of 'fear') is a difficult motivational state to study. While many studies have used flight initiation distance as a proxy for fearfulness and examined the factors influencing the decision to flee, there is no general understanding of the relative importance of these factors. By identifying factors with large effect sizes, we can determine whether anti-predator strategies reduce fear, and we gain a unique perspective on the coevolution of predator and anti-predator behaviour. Based on an extensive review and formal meta-analysis, we found that predator traits that were associated with greater risk (speed, size, directness of approach), increased prey distance to refuge and experience with predators consistently amplified the perception of risk (in terms of flight initiation distance). While fish tolerated closer approach when in larger schools, other taxa had greater flight initiation distances when in larger groups. The presence of armoured and cryptic morphologies decreased perception of risk, but body temperature in lizards had no robust effect on flight initiation distance. We find that selection generally acts on prey to be sensitive to predator behaviour, as well as on prey to modify their behaviour and morphology.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Predator-prey naïveté, antipredator behavior, and the ecology of predator invasions

                Bookmark

                Author and article information

                Journal
                Proceedings of the Royal Society B: Biological Sciences
                Proceedings of the Royal Society B: Biological Sciences
                The Royal Society
                0962-8452
                1471-2954
                January 08 2014
                January 08 2014
                : 281
                : 1777
                : 20133019
                Article
                10.1098/rspb.2013.3019
                1659614b-c8d2-44c2-94e0-1ab472de9252
                © 2014
                History

                Comments

                Comment on this article