0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chikungunya virus infection in Aedes aegypti is modulated by L-cysteine, taurine, hypotaurine and glutathione metabolism

      research-article
      , , * ,
      PLOS Neglected Tropical Diseases
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Blood meal and infections cause redox imbalance and oxidative damage in mosquitoes which triggers the mosquito’s system to produce antioxidants in response to increased oxidative stress. Important pathways activated owing to redox imbalance include taurine, hypotaurine and glutathione metabolism. The present study was undertaken to evaluate the role of these pathways during chikungunya virus (CHIKV) infection in Aedes aegypti mosquitoes.

          Methodology

          Using a dietary L-cysteine supplement system, we upregulated these pathways and evaluated oxidative damage and oxidative stress response upon CHIKV infection using protein carbonylation and GST assays. Further, using a dsRNA based approach, we silenced some of the genes involved in synthesis and transport of taurine and hypotaurine and then evaluated the impact of these genes on CHIKV infection and redox biology in the mosquitoes.

          Conclusions

          We report that CHIKV infection exerts oxidative stress in the A. aegypti, leading to oxidative damage and as a response, an elevated GST activity was observed. It was also observed that dietary L-cysteine treatment restricted CHIKV infection in A. aegypti mosquitoes. This L-cysteine mediated CHIKV inhibition was coincided by enhanced GST activity that further resulted in reduced oxidative damage during the infection. We also report that silencing of genes involved in synthesis of taurine and hypotaurine modulates CHIKV infection and redox biology of Aedes mosquitoes during the infection.

          Author summary

          Mosquitoes need human blood for the development of their eggs. During this process, when the mosquito bites human already harboring viruses such as chikungunya virus (CHIKV), the virus is taken up by the mosquito, which carries the virus for the rest of its life and transmits the virus to healthy individuals during subsequent blood meals. However, the impact of these viruses on the mosquito physiology is poorly understood. This study is an attempt to evaluate the impact of CHIKV infection on the redox biology of Aedes mosquitoes. Oxidative stress is a critical response to several biological activities and is controlled by a vast network of pathways of genes/proteins. Some of these pathways are L-cysteine centric, such as taurine, hypotaurine and glutathione metabolism. By providing dietary supplements of L-cysteine and by reducing the expression of some of the genes in the above mentioned pathways, we studied the role of these pathways in regulating oxidative stress during CHIKV infection. Our results suggest that dietary supplement of L-cysteine and selected genes of the taurine/hypotaurine and glutathione pathways was found to control oxidative damage in the mosquitoes during CHIKV infection by regulating the expression of Glutathione-s-transferases (GST) enzyme, a well known antioxidant molecule.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal

          Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are shown.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species.

            Reactive oxygen species (ROS) are produced by living cells as normal cellular metabolic byproduct. Under excessive stress conditions, cells will produce numerous ROS, and the living organisms eventually evolve series of response mechanisms to adapt to the ROS exposure as well as utilize it as the signaling molecules. ROS molecules would trigger oxidative stress in a feedback mechanism involving many biological processes, such as apoptosis, necrosis and autophagy. Growing evidences have suggested that ROS play a critical role as the signaling molecules throughout the entire cell death pathway. Overwhelming production of ROS can destroy organelles structure and bio-molecules, which lead to inflammatory response that is a known underpinning mechanism for the development of diabetes and cancer. Cytochrome P450 enzymes (CYP) are regarded as the markers of oxidative stress, can transform toxic metabolites into ROS, such as superoxide anion, hydrogen peroxide and hydroxyl radical which might cause injury of cells. Accordingly, cells have evolved a balanced system to neutralize the extra ROS, namely antioxidant systems that consist of enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidases (GPxs), thioredoxin (Trx) as well as the non-enzymatic antioxidants which collectively reduce oxidative state. Herein, we review the recent novel findings of cellular processes induced by ROS, and summarize the roles of cellular endogenous antioxidant systems as well as natural anti-oxidative compounds in several human diseases caused by ROS in order to illustrate the vital role of antioxidants in prevention against oxidative stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis

              Reactive oxygen species- (ROS-) induced lipid peroxidation plays a critical role in cell death including apoptosis, autophagy, and ferroptosis. This fundamental and conserved mechanism is based on an excess of ROS which attacks biomembranes, propagates lipid peroxidation chain reactions, and subsequently induces different types of cell death. A highly evolved sophisticated antioxidant system exists that acts to protect the cells from oxidative damage. In this review, we discussed how ROS propagate lipid peroxidation chain reactions and how the products of lipid peroxidation initiate apoptosis and autophagy in current models. We also discussed the mechanism of lipid peroxidation during ferroptosis, and we summarized lipid peroxidation in pathological conditions of critical illness. We aim to bring a more global and integrative sight to know how different ROS-induced lipid peroxidation occurs among apoptosis, autophagy, and ferroptosis.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ValidationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: InvestigationRole: Methodology
                Role: ConceptualizationRole: Funding acquisitionRole: ResourcesRole: SupervisionRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                PLOS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                2 May 2023
                May 2023
                : 17
                : 5
                : e0011280
                Affiliations
                [001] Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
                Beijing Children’s Hospital Capital Medical University, CHINA
                Author notes

                The authors have declared that no competing interests exist.

                [¤]

                Current address: Currently in Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America

                Author information
                https://orcid.org/0000-0002-6531-7768
                Article
                PNTD-D-22-01185
                10.1371/journal.pntd.0011280
                10153688
                16acba2c-c0dc-4378-b4e8-8960fc7c52d5
                © 2023 Kumar et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 September 2022
                : 31 March 2023
                Page count
                Figures: 5, Tables: 0, Pages: 18
                Funding
                The author(s) received no specific funding for this work.
                Categories
                Research Article
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Biology and Life Sciences
                Species Interactions
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Biology and Life Sciences
                Zoology
                Entomology
                Insects
                Mosquitoes
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Arthropoda
                Insects
                Mosquitoes
                Biology and Life Sciences
                Zoology
                Animals
                Invertebrates
                Arthropoda
                Insects
                Mosquitoes
                Medicine and Health Sciences
                Medical Conditions
                Tropical Diseases
                Neglected Tropical Diseases
                Chikungunya Infection
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Viral Diseases
                Chikungunya Infection
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Blood
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Blood
                Biology and Life Sciences
                Physiology
                Body Fluids
                Blood
                Biology and Life Sciences
                Biochemistry
                Oxidative Damage
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Togaviruses
                Alphaviruses
                Chikungunya Virus
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Togaviruses
                Alphaviruses
                Chikungunya Virus
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Togaviruses
                Alphaviruses
                Chikungunya Virus
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Togaviruses
                Alphaviruses
                Chikungunya Virus
                Biology and Life Sciences
                Cell Biology
                Oxidative Stress
                Research and Analysis Methods
                Chromatographic Techniques
                Affinity Chromatography
                Amino Acid Specific Chromatography
                Glutathione Chromatography
                Physical Sciences
                Chemistry
                Chemical Reactions
                Oxidation-Reduction Reactions
                Physical Sciences
                Chemistry
                Electrochemistry
                Oxidation-Reduction Reactions
                Custom metadata
                All relevant data are within the manuscript and its Supporting information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article