0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Synthetic Contrasts in Musculoskeletal MRI : A Review

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review summarizes the existing techniques and methods used to generate synthetic contrasts from magnetic resonance imaging data focusing on musculoskeletal magnetic resonance imaging. To that end, the different approaches were categorized into 3 different methodological groups: mathematical image transformation, physics-based, and data-driven approaches. Each group is characterized, followed by examples and a brief overview of their clinical validation, if present. Finally, we will discuss the advantages, disadvantages, and caveats of synthetic contrasts, focusing on the preservation of image information, validation, and aspects of the clinical workflow.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Magnetic Resonance Fingerprinting

          Summary Magnetic Resonance (MR) is an exceptionally powerful and versatile measurement technique. The basic structure of an MR experiment has remained nearly constant for almost 50 years. Here we introduce a novel paradigm, Magnetic Resonance Fingerprinting (MRF) that permits the non-invasive quantification of multiple important properties of a material or tissue simultaneously through a new approach to data acquisition, post-processing and visualization. MRF provides a new mechanism to quantitatively detect and analyze complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to specifically identify the presence of a target material or tissue, which will increase the sensitivity, specificity, and speed of an MR study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern recognition algorithm, MRF inherently suppresses measurement errors and thus can improve accuracy compared to previous approaches.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI.

            Noninvasively mapping the layout of cortical areas in humans is a continuing challenge for neuroscience. We present a new method of mapping cortical areas based on myelin content as revealed by T1-weighted (T1w) and T2-weighted (T2w) MRI. The method is generalizable across different 3T scanners and pulse sequences. We use the ratio of T1w/T2w image intensities to eliminate the MR-related image intensity bias and enhance the contrast to noise ratio for myelin. Data from each subject were mapped to the cortical surface and aligned across individuals using surface-based registration. The spatial gradient of the group average myelin map provides an observer-independent measure of sharp transitions in myelin content across the surface--i.e., putative cortical areal borders. We found excellent agreement between the gradients of the myelin maps and the gradients of published probabilistic cytoarchitectonically defined cortical areas that were registered to the same surface-based atlas. For other cortical regions, we used published anatomical and functional information to make putative identifications of dozens of cortical areas or candidate areas. In general, primary and early unimodal association cortices are heavily myelinated and higher, multimodal, association cortices are more lightly myelinated, but there are notable exceptions in the literature that are confirmed by our results. The overall pattern in the myelin maps also has important correlations with the developmental onset of subcortical white matter myelination, evolutionary cortical areal expansion in humans compared with macaques, postnatal cortical expansion in humans, and maps of neuronal density in non-human primates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gleaning multicomponent T1 and T2 information from steady-state imaging data.

              The driven-equilibrium single-pulse observation of T(1) (DESPOT1) and T(2) (DESPOT2) are rapid, accurate, and precise methods for voxelwise determination of the longitudinal and transverse relaxation times. A limitation of the methods, however, is the inherent assumption of single-component relaxation. In a variety of biological tissues, in particular human white matter (WM) and gray matter (GM), the relaxation has been shown to be more completely characterized by a summation of two or more relaxation components, or species, each believed to be associated with unique microanatomical domains or water pools. Unfortunately, characterization of these components on a voxelwise, whole-brain basis has traditionally been hindered by impractical acquisition times. In this work we extend the conventional DESPOT1 and DESPOT2 approaches to include multicomponent relaxation analysis. Following numerical analysis of the new technique, renamed multicomponent driven equilibrium single pulse observation of T(1)/T(2) (mcDESPOT), whole-brain multicomponent T(1) and T(2) quantification is demonstrated in vivo with clinically realistic times of between 16 and 30 min. Results obtained from four healthy individuals and two primary progressive multiple sclerosis (MS) patients demonstrate the future potential of the approach for identifying and assessing tissue changes associated with several neurodegenerative conditions, in particular those associated with WM. (c) 2008 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                Investigative Radiology
                Invest Radiol
                Ovid Technologies (Wolters Kluwer Health)
                1536-0210
                0020-9996
                2023
                January 2023
                September 14 2022
                : 58
                : 1
                : 111-119
                Affiliations
                [1 ]Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
                Article
                10.1097/RLI.0000000000000917
                36165990
                16aff987-a608-4a29-94f4-99545fb48d45
                © 2022
                History

                Comments

                Comment on this article