40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Predicted overlapping microRNA regulators of acetylcholine packaging and degradation in neuroinflammation-related disorders

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MicroRNAs (miRNAs) can notably control many targets each and regulate entire cellular pathways, but whether miRNAs can regulate complete neurotransmission processes is largely unknown. Here, we report that miRNAs with complementary sequence motifs to the key genes involved in acetylcholine (ACh) synthesis and/or packaging show massive overlap with those regulating ACh degradation. To address this topic, we first searched for miRNAs that could target the 3′-untranslated regions of the choline acetyltransferase (ChAT) gene that controls ACh synthesis; the vesicular ACh transporter (VAChT), encoded from an intron in the ChAT gene and the ACh hydrolyzing genes acetyl- and/or butyrylcholinesterase (AChE, BChE). Intriguingly, we found that many of the miRNAs targeting these genes are primate-specific, and that changes in their levels associate with inflammation, anxiety, brain damage, cardiac, neurodegenerative, or pain-related syndromes. To validate the in vivo relevance of this dual interaction, we selected the evolutionarily conserved miR-186, which targets both the stress-inducible soluble “readthrough” variant AChE-R and the major peripheral cholinesterase BChE. We exposed mice to predator scent stress and searched for potential associations between consequent changes in their miR-186, AChE-R, and BChE levels. Both intestinal miR-186 as well as BChE and AChE-R activities were conspicuously elevated 1 week post-exposure, highlighting the previously unknown involvement of miR-186 and BChE in psychological stress responses. Overlapping miRNA regulation emerges from our findings as a recently evolved surveillance mechanism over cholinergic neurotransmission in health and disease; and the corresponding miRNA details and disease relevance may serve as a useful resource for studying the molecular mechanisms underlying this surveillance.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis.

          Acute myocardial infarction (MI) due to coronary artery occlusion is accompanied by a pathological remodeling response that includes hypertrophic cardiac growth and fibrosis, which impair cardiac contractility. Previously, we showed that cardiac hypertrophy and heart failure are accompanied by characteristic changes in the expression of a collection of specific microRNAs (miRNAs), which act as negative regulators of gene expression. Here, we show that MI in mice and humans also results in the dysregulation of specific miRNAs, which are similar to but distinct from those involved in hypertrophy and heart failure. Among the MI-regulated miRNAs are members of the miR-29 family, which are down-regulated in the region of the heart adjacent to the infarct. The miR-29 family targets a cadre of mRNAs that encode proteins involved in fibrosis, including multiple collagens, fibrillins, and elastin. Thus, down-regulation of miR-29 would be predicted to derepress the expression of these mRNAs and enhance the fibrotic response. Indeed, down-regulation of miR-29 with anti-miRs in vitro and in vivo induces the expression of collagens, whereas over-expression of miR-29 in fibroblasts reduces collagen expression. We conclude that miR-29 acts as a regulator of cardiac fibrosis and represents a potential therapeutic target for tissue fibrosis in general.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma.

            microRNAs are noncoding RNAs inhibiting expression of numerous target genes, and a few have been shown to act as oncogenes or tumor suppressors. We show that microRNA-7 (miR-7) is a potential tumor suppressor in glioblastoma targeting critical cancer pathways. miR-7 potently suppressed epidermal growth factor receptor expression, and furthermore it independently inhibited the Akt pathway via targeting upstream regulators. miR-7 expression was down-regulated in glioblastoma versus surrounding brain, with a mechanism involving impaired processing. Importantly, transfection with miR-7 decreased viability and invasiveness of primary glioblastoma lines. This study establishes miR-7 as a regulator of major cancer pathways and suggests that it has therapeutic potential for glioblastoma.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells.

              MicroRNA dysregulation is observed in different types of cancer. MiR-21 up-regulation has been reported for the majority of cancers profiled to date; however, knowledge is limited on the mechanism of action of miR-21, including identification of functionally important targets that contribute to its proproliferative and antiapoptotic actions. In this study, we show for the first time that miR-21 targets multiple important components of the p53, transforming growth factor-beta (TGF-beta), and mitochondrial apoptosis tumor-suppressive pathways. Down-regulation of miR-21 in glioblastoma cells leads to derepression of these pathways, causing repression of growth, increased apoptosis, and cell cycle arrest. These phenotypes are dependent on two of the miR-21 targets validated in this study, HNRPK and TAp63. These findings establish miR-21 as an important oncogene that targets a network of p53, TGF-beta, and mitochondrial apoptosis tumor suppressor genes in glioblastoma cells.
                Bookmark

                Author and article information

                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                10 February 2014
                2014
                : 7
                : 9
                Affiliations
                Department of Biological Chemistry and the Center for Bioengineering, The Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem Jerusalem, Israel
                Author notes

                Edited by: Bernard Attali, Tel Aviv University, Israel

                Reviewed by: Alessandro Vercelli, Università Degli Studi di Siena, Italy; Björn Spittau, Albert-Ludwigs-University Freiburg, Germany

                *Correspondence: Hermona Soreq, Department of Biological Chemistry and the Center for Bioengineering, The Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem 91904, Israel e-mail: hermona.soreq@ 123456mail.huji.ac.il

                This article was submitted to the journal Frontiers in Molecular Neuroscience.

                Article
                10.3389/fnmol.2014.00009
                3918661
                24574962
                16cedc60-49d6-4679-a115-769ec48f030d
                Copyright © 2014 Nadorp and Soreq.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 September 2013
                : 21 January 2014
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 102, Pages: 11, Words: 7729
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                acetlycholinesterase,butyrylcholinesterase,primate-specific micrornas,choline acetyltransferase,cholinergic signaling,vesicular acetylcholine transporter,microrna-186

                Comments

                Comment on this article