10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Heparin, Heparan Sulphate and the TGF-β Cytokine Superfamily

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Of the circa 40 cytokines of the TGF-β superfamily, around a third are currently known to bind to heparin and heparan sulphate. This includes TGF-β1, TGF-β2, certain bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs), as well as GDNF and two of its close homologues. Experimental studies of their heparin/HS binding sites reveal a diversity of locations around the shared cystine-knot protein fold. The activities of the TGF-β cytokines in controlling proliferation, differentiation and survival in a range of cell types are in part regulated by a number of specific, secreted BMP antagonist proteins. These vary in structure but seven belong to the CAN or DAN family, which shares the TGF-β type cystine-knot domain. Other antagonists are more distant members of the TGF-β superfamily. It is emerging that the majority, but not all, of the antagonists are also heparin binding proteins. Any future exploitation of the TGF-β cytokines in the therapy of chronic diseases will need to fully consider their interactions with glycosaminoglycans and the implications of this in terms of their bioavailability and biological activity.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          BMP signalling: agony and antagony in the family.

          Bone morphogenetic proteins (BMPs) are secreted extracellular matrix (ECM)-associated proteins that regulate a wide range of developmental processes, including limb and kidney formation. A critical element of BMP regulation is the presence of secreted antagonists that bind and inhibit BMP binding to their cognate Ser/Thr kinase receptors at the plasma membrane. Antagonists such as Noggin, Chordin, Gremlin (Grem1), and twisted gastrulation-1 (Twsg1) have been shown to inhibit BMP action in a range of different cell types and developmental stage-specific contexts. Here we review new developments in the field of BMP and BMP antagonist biology during mammalian development and suggest strategies for targeting these proteins in human disease. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Roles of TGF-beta family signaling in stem cell renewal and differentiation.

            Transforming growth factor (TGF)-betas and their family members, including bone morphogenetic proteins (BMPs), Nodal and activins, have been implicated in the development and maintenance of various organs, in which stem cells play important roles. Stem cells are characterized by their ability to self-renew and to generate differentiated cells of a particular tissue, and are classified into embryonic and somatic stem cells. Embryonic stem (ES) cells self-renew indefinitely and contribute to derivatives of all three primary germ layers. In contrast, somatic stem cells, which can be identified in various adult organs, exhibit limited abilities for self-renewal and differentiation in most cases. The multi-lineage differentiation capacity of ES cells and somatic stem cells has opened possibilities for cell replacement therapies for genetic, malignant and degenerative diseases. In order to utilize stem cells for therapeutic applications, it is essential to understand the extrinsic and intrinsic factors regulating self-renewal and differentiation of stem cells. More recently, induced pluripotent stem (iPS) cells have been generated from mouse and human fibroblasts that resemble ES cells via ectopic expression of four transcription factors. iPS cells may have an advantage in regenerative medicine, since they overcome the immunogenicity and ethical controversy of ES cells. Moreover, recent studies have highlighted the involvement of cancer stem cells during the formation and progression of various types of cancers, including leukemia, glioma, and breast cancer. Here, we illustrate the roles of TGF-beta family members in the maintenance and differentiation of ES cells, somatic stem cells, and cancer stem cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity.

              Bone morphogenetic protein 2 (BMP-2) plays a decisive role during bone regeneration and repair as well as during various stages of embryonal development. A cDNA encoding mature human BMP-2 could be efficiently expressed in Escherichia coli, and after renaturation a dimeric BMP-2 protein of M(r) 26,000 was prepared with a purity greater 98%. The recombinant BMP-2 was functionally active as demonstrated by the induction of alkaline phosphatase activity in the C3H10T1/2 fibroblast cell line (EC50 of 70 nM) and proteoglycan synthesis in embryonic chicken limb bud cells (EC50 of 15-20 nM). A peptide 1-17 representing the N-terminal basic part of BMP-2 as well as heparin increased the specific activity of the protein about fivefold in the limb bud assay. These observations suggested that the N-terminai reduce the specific activity of BMP-2, probably by interacting with heparinic sites in the extracellular matrix. This conclusion was supported by a variant EHBMP-2, where the N-terminal residues 1-12 of BMP-2 had been substituted by a dummy sequence of equal length and which showed an EC50 value of around 1 nM which was affected neither by heparin nor by peptide 1-17. A physical interaction between BMP-2 and heparin could be seen in biosensor experiments, where BMP-2 bound to immobilized heparin with a dissociation constant, Kd, of approximately 20 nM, whereas the heparin-binding of variant EHBMP-2 was negligible. These results identify the basic N-terminal domains of dimeric BMP-2 as heparin-binding sites that are not obligatory for receptor activation but modulate its biological activity.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                29 April 2017
                May 2017
                : 22
                : 5
                : 713
                Affiliations
                Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK; b.mulloy@ 123456imperial.ac.uk
                Author notes
                [* ]Correspondence: c.rider@ 123456rhul.ac.uk
                Article
                molecules-22-00713
                10.3390/molecules22050713
                6154108
                28468283
                171745ea-b787-4acd-9aa6-d18606a7b1f2
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 March 2017
                : 26 April 2017
                Categories
                Review

                heparin,heparan sulphate,tgf-β,bone morphogenetic protein (bmp),growth and differentiation factor (gdf),gdnf,bmp antagonists,noggin,sclerostin,gremlin

                Comments

                Comment on this article