3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Synthesis-on-substrate of quantum dot solids

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d2506643e338">Perovskite light-emitting diodes (PeLEDs) with an external quantum efficiency exceeding 20% have been achieved in both green and red wavelengths1-5; however, the performance of blue-emitting PeLEDs lags behind6,7. Ultrasmall CsPbBr3 quantum dots are promising candidates with which to realize efficient and stable blue PeLEDs, although it has proven challenging to synthesize a monodispersed population of ultrasmall CsPbBr3 quantum dots, and difficult to retain their solution-phase properties when casting into solid films8. Here we report the direct synthesis-on-substrate of films of suitably coupled, monodispersed, ultrasmall perovskite QDs. We develop ligand structures that enable control over the quantum dots' size, monodispersity and coupling during film-based synthesis. A head group (the side with higher electrostatic potential) on the ligand provides steric hindrance that suppresses the formation of layered perovskites. The tail (the side with lower electrostatic potential) is modified using halide substitution to increase the surface binding affinity, constraining resulting grains to sizes within the quantum confinement regime. The approach achieves high monodispersity (full-width at half-maximum = 23 nm with emission centred at 478 nm) united with strong coupling. We report as a result blue PeLEDs with an external quantum efficiency of 18% at 480 nm and 10% at 465 nm, to our knowledge the highest reported among perovskite blue LEDs by a factor of 1.5 and 2, respectively6,7. </p>

          Related collections

          Author and article information

          Contributors
          Journal
          Nature
          Nature
          Springer Science and Business Media LLC
          0028-0836
          1476-4687
          December 22 2022
          December 21 2022
          December 22 2022
          : 612
          : 7941
          : 679-684
          Article
          10.1038/s41586-022-05486-3
          36543955
          173f1b42-afe8-4d37-b526-ce6747a6c8a2
          © 2022

          https://www.springernature.com/gp/researchers/text-and-data-mining

          https://www.springernature.com/gp/researchers/text-and-data-mining

          History

          Comments

          Comment on this article