35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metal oxide-resistive memory using graphene-edge electrodes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The emerging paradigm of ‘abundant-data' computing requires real-time analytics on enormous quantities of data collected by a mushrooming network of sensors. Todays computing technology, however, cannot scale to satisfy such big data applications with the required throughput and energy efficiency. The next technology frontier will be monolithically integrated chips with three-dimensionally interleaved memory and logic for unprecedented data bandwidth with reduced energy consumption. In this work, we exploit the atomically thin nature of the graphene edge to assemble a resistive memory (∼3 Å thick) stacked in a vertical three-dimensional structure. We report some of the lowest power and energy consumption among the emerging non-volatile memories due to an extremely thin electrode with unique properties, low programming voltages, and low current. Circuit analysis of the three-dimensional architecture using experimentally measured device properties show higher storage potential for graphene devices compared that of metal based devices.

          Abstract

          Increasing memory performance and density will require new breakthroughs in atomic-scale technology and three-dimensional device architectures. Here, the authors demonstrate a memory just 3 Å thick that can be stacked by exploiting the atomically thin edge of monolayer graphene.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Roll-to-roll production of 30-inch graphene films for transparent electrodes.

          The outstanding electrical, mechanical and chemical properties of graphene make it attractive for applications in flexible electronics. However, efforts to make transparent conducting films from graphene have been hampered by the lack of efficient methods for the synthesis, transfer and doping of graphene at the scale and quality required for applications. Here, we report the roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates. The films have sheet resistances as low as approximately 125 ohms square(-1) with 97.4% optical transmittance, and exhibit the half-integer quantum Hall effect, indicating their high quality. We further use layer-by-layer stacking to fabricate a doped four-layer film and measure its sheet resistance at values as low as approximately 30 ohms square(-1) at approximately 90% transparency, which is superior to commercial transparent electrodes such as indium tin oxides. Graphene electrodes were incorporated into a fully functional touch-screen panel device capable of withstanding high strain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A roadmap for graphene.

            Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanoionics-based resistive switching memories.

              Many metal-insulator-metal systems show electrically induced resistive switching effects and have therefore been proposed as the basis for future non-volatile memories. They combine the advantages of Flash and DRAM (dynamic random access memories) while avoiding their drawbacks, and they might be highly scalable. Here we propose a coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms. The ion-migration effects are coupled to redox processes which cause the change in resistance. They are subdivided into cation-migration cells, based on the electrochemical growth and dissolution of metallic filaments, and anion-migration cells, typically realized with transition metal oxides as the insulator, in which electronically conducting paths of sub-oxides are formed and removed by local redox processes. From this insight, we take a brief look into molecular switching systems. Finally, we discuss chip architecture and scaling issues.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                25 September 2015
                2015
                : 6
                : 8407
                Affiliations
                [1 ]Department of Electrical Engineering and Stanford SystemX Alliance, Stanford University , Stanford, California 94305, USA
                Author notes
                [*]

                These authors contributed equally to this work.

                [†]

                Present address: Memory Strategy Group, SanDisk Corporation, 951 SanDisk Drive, Milpitas, California 95035, USA.

                Article
                ncomms9407
                10.1038/ncomms9407
                4598621
                26406356
                17a67abf-e3ca-444b-843d-cc8994a677bd
                Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 26 June 2015
                : 19 August 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article