86
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel Murine Infection Models Provide Deep Insights into the “Ménage à Trois” of Campylobacter jejuni, Microbiota and Host Innate Immunity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Although Campylobacter jejuni-infections have a high prevalence worldwide and represent a significant socioeconomic burden, it is still not well understood how C. jejuni causes intestinal inflammation. Detailed investigation of C. jejuni-mediated intestinal immunopathology is hampered by the lack of appropriate vertebrate models. In particular, mice display colonization resistance against this pathogen.

          Methodology/Principal Findings

          To overcome these limitations we developed a novel C. jejuni-infection model using gnotobiotic mice in which the intestinal flora was eradicated by antibiotic treatment. These animals could then be permanently associated with a complete human (hfa) or murine (mfa) microbiota. After peroral infection C. jejuni colonized the gastrointestinal tract of gnotobiotic and hfa mice for six weeks, whereas mfa mice cleared the pathogen within two days. Strikingly, stable C. jejuni colonization was accompanied by a pro-inflammatory immune response indicated by increased numbers of T- and B-lymphocytes, regulatory T-cells, neutrophils and apoptotic cells, as well as increased concentrations of TNF-α, IL-6, and MCP-1 in the colon mucosa of hfa mice. Analysis of MyD88 −/−, TRIF −/−, TLR4 −/−, and TLR9 −/− mice revealed that TLR4- and TLR9-signaling was essential for immunopathology following C. jejuni-infection. Interestingly, C. jejuni-mutant strains deficient in formic acid metabolism and perception induced less intestinal immunopathology compared to the parental strain infection. In summary, the murine gut flora is essential for colonization resistance against C. jejuni and can be overcome by reconstitution of gnotobiotic mice with human flora. Detection of C. jejuni-LPS and -CpG-DNA by host TLR4 and TLR9, respectively, plays a key role in immunopathology. Finally, the host immune response is tightly coupled to bacterial formic acid metabolism and invasion fitness.

          Conclusion/Significance

          We conclude that gnotobiotic and “humanized” mice represent excellent novel C. jejuni-infection and -inflammation models and provide deep insights into the immunological and molecular interplays between C. jejuni, microbiota and innate immunity in human campylobacteriosis.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii.

          Oral infection of susceptible mice with Toxoplasma gondii results in Th1-type immunopathology in the ileum. We investigated gut flora changes during ileitis and determined contributions of gut bacteria to intestinal inflammation. Analysis of the intestinal microflora revealed that ileitis was accompanied by increasing bacterial load, decreasing species diversity, and bacterial translocation. Gram-negative bacteria identified as Escherichia coli and Bacteroides/Prevotella spp. accumulated in inflamed ileum at high concentrations. Prophylactic or therapeutic administration of ciprofloxacin and/or metronidazole ameliorated ileal immunopathology and reduced intestinal NO and IFN-gamma levels. Most strikingly, gnotobiotic mice in which cultivable gut bacteria were removed by quintuple antibiotic treatment did not develop ileitis after Toxoplasma gondii infection. A reduction in total numbers of lymphocytes was observed in the lamina propria of specific pathogen-free (SPF), but not gnotobiotic, mice upon development of ileitis. Relative numbers of CD4(+) T cells did not differ in naive vs infected gnotobiotic or SPF mice, but infected SPF mice showed a significant increase in the frequencies of activated CD4(+) T cells compared with gnotobiotic mice. Furthermore, recolonization with total gut flora, E. coli, or Bacteroides/Prevotella spp., but not Lactobacillus johnsonii, induced immunopathology in gnotobiotic mice. Animals recolonized with E. coli and/or total gut flora, but not L. johnsonii, showed elevated ileal NO and/or IFN-gamma levels. In conclusion, Gram-negative bacteria, i.e., E. coli, aggravate pathogen-induced intestinal Th1-type immunopathology. Thus, pathogen-induced acute ileitis may prove useful to study bacteria-host interactions in small intestinal inflammation and to test novel therapies based on modulation of gut flora.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evasion of Toll-like receptor 5 by flagellated bacteria.

            Toll-like receptor 5 (TLR5) recognizes an evolutionarily conserved site on bacterial flagellin that is required for flagellar filament assembly and motility. The alpha and epsilon Proteobacteria, including the important human pathogens Campylobacter jejuni, Helicobacter pylori, and Bartonella bacilliformis, require flagellar motility to efficiently infect mammalian hosts. In this study, we demonstrate that these bacteria make flagellin molecules that are not recognized by TLR5. We map the site responsible for TLR5 evasion to amino acids 89-96 of the N-terminal D1 domain, which is centrally positioned within the previously defined TLR5 recognition site. Salmonella flagellin is strongly recognized by TLR5, but mutating residues 89-96 to the corresponding H. pylori flaA sequence abolishes TLR5 recognition and also destroys bacterial motility. To preserve bacterial motility, alpha and epsilon Proteobacteria possess compensatory amino acid changes in other regions of the flagellin molecule, and we engineer a mutant form of Salmonella flagellin that evades TLR5 but retains motility. These results suggest that TLR5 evasion is critical for the survival of this subset of bacteria at mucosal sites in animals and raise the intriguing possibility that flagellin receptors provided the selective force to drive the evolution of these unique subclasses of bacterial flagellins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms.

              Campylobacter jejuni has long been recognized as a cause of bacterial food-borne illness, and surprisingly, it remains the most prevalent bacterial food-borne pathogen in the industrial world to date. Natural reservoirs for this Gram-negative, spiral-shaped bacterium are wild birds, whose intestines offer a suitable biological niche for the survival and dissemination of C. jejuni Chickens become colonized shortly after birth and are the most important source for human infection. In the last decade, effective intervention strategies to limit infections caused by this elusive pathogen were hindered mainly because of a paucity in understanding the virulence mechanisms of C. jejuni and in part, unavailability of an adequate animal model for the disease. However, recent developments in deciphering molecular mechanisms of virulence of C. jejuni made it clear that C. jejuni is a unique pathogen, being able to execute N-linked glycosylation of more than 30 proteins related to colonization, adherence, and invasion. Moreover, the flagellum is not only depicted to facilitate motility but as well secretion of Campylobacter invasive antigens (Cia). The only toxin of C. jejuni, the so-called cytolethal distending toxin (CdtA,B,C), seems to be important for cell cycle control and induction of host cell apoptosis and has been recognized as a major pathogenicity-associated factor. In contrast to other diarrhoea-causing bacteria, no other classical virulence factors have yet been identified in C. jejuni. Instead, host factors seem to play a major role for pathogenesis of campylobacteriosis of man. Indeed, several lines of evidence suggest exploitation of different adaptation strategies by this pathogen depending on its requirement, whether to establish itself in the natural avian reservoir or during the course of human infection. (c) 2009 Elsevier GmbH. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                15 June 2011
                : 6
                : 6
                : e20953
                Affiliations
                [1 ]Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
                [2 ]Department of Pathology/Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin, Berlin, Germany
                [3 ]Department of Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
                Albany Medical College, United States of America
                Author notes

                Conceived and designed the experiments: SB AF UG UBG MMH. Performed the experiments: AF RP L-MH BO MM MMH . Analyzed the data: SB AF RP L-MH BO AAK MM CL MMH. Contributed reagents/materials/analysis tools: CL AAK AEZ JID UG . Wrote the paper: SB AF AAK MM UG MMH .

                Article
                PONE-D-11-04054
                10.1371/journal.pone.0020953
                3115961
                21698299
                1822ccc6-ce5f-4ac0-bd94-1bcc500f674e
                Bereswill et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 25 February 2011
                : 13 May 2011
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Immunology
                Immunity
                Innate Immunity
                Microbiology
                Immunity
                Innate Immunity
                Bacterial Pathogens
                Medicine
                Clinical Immunology
                Immunity
                Innate Immunity

                Uncategorized
                Uncategorized

                Comments

                Comment on this article