2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      NormExpression: an R package to normalize gene expression data using evaluated methods

      Preprint

      , , , , , , ,

      bioRxiv

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Data normalization is a crucial step in the gene expression analysis as it ensures the validity of its downstream analyses. Although many metrics have been designed to evaluate the current normalization methods, the different metrics yield inconsistent results. In this study, we designed a new metric named Area Under normalized CV threshold Curve (AUCVC) and applied it with another metric mSCC to evaluate 14 commonly used normalization methods, achieving consistency in our evaluation results using both bulk RNA-seq and scRNA-seq data from the same library construction protocol. This consistency has validated the underlying theory that a sucessiful normalization method simultaneously maximizes the number of uniform genes and minimizes the correlation between the expression profiles of gene pairs. This consistency can also be used to analyze the quality of gene expression data. The gene expression data, normalization methods and evaluation metrics used in this study have been included in an R package named NormExpression. NormExpression provides a framework and a fast and simple way for researchers to evaluate methods (particularly some data-driven methods or their own methods) and then select a best one for data normalization in the gene expression analysis.

          Related collections

          Author and article information

          Journal
          bioRxiv
          January 22 2018
          Article
          10.1101/251140
          © 2018
          Product

          Quantitative & Systems biology, Biophysics

          Comments

          Comment on this article