0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nutrient conservation achieved through mixing regime improves microalgal wastewater treatment and diminishes the net environmental impact

      ,
      Chemical Engineering Journal
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Algae-bacteria interactions: Evolution, ecology and emerging applications.

          Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Algal-bacterial processes for the treatment of hazardous contaminants: a review.

            Microalgae enhance the removal of nutrients, organic contaminants, heavy metals, and pathogens from domestic wastewater and furnish an interesting raw material for the production of high-value chemicals (algae metabolites) or biogas. Photosynthetic oxygen production also reduces the need for external aeration, which is especially advantageous for the treatment of hazardous pollutants that must be biodegraded aerobically but might volatilize during mechanical aeration. Recent studies have therefore shown that when proper methods for algal selection and cultivation are used, it is possible to use microalgae to produce the O(2) required by acclimatized bacteria to biodegrade hazardous pollutants such as polycyclic aromatic hydrocarbons, phenolics, and organic solvents. Well-mixed photobioreactors with algal biomass recirculation are recommended to protect the microalgae from effluent toxicity and optimize light utilization efficiency. The optimum biomass concentration to maintain in the system depends mainly on the light intensity and the reactor configuration: At low light intensity, the biomass concentration should be optimized to avoid mutual shading and dark respiration whereas at high light intensity, a high biomass concentration can be useful to protect microalgae from light inhibition and optimize the light/dark cycle frequency. Photobioreactors can be designed as open (stabilization ponds or high rate algal ponds) or enclosed (tubular, flat plate) systems. The latter are generally costly to construct and operate but more efficient than open systems. The best configuration to select will depend on factors such as process safety, land cost, and biomass use. Biomass harvest remains a limitation but recent progresses have been made in the selection of flocculating strains, the application of bioflocculants, or the use of immobilized biomass systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture.

              A wastewater-born and settleable algal-bacterial culture, cultivated in a stirred tank photobioreactor under lab conditions, was used to remove the carbon and nutrients in municipal wastewater and accumulate biomass simultaneously. The algal-bacterial culture showed good settleable property and could totally settle down over 20 min, resulting in a reduction of total suspended solids from an initial 1.84 to 0.016 g/l. The average removal efficiencies of chemical oxygen demand, total kjeldahl nitrogen and phosphate were 98.2 ± 1.3%, 88.3 ± 1.6% and 64.8 ± 1.0% within 8 days, respectively, while the average biomass productivity was 10.9 ± 1.1 g/m(2) · d. Accumulation into biomass, identified as the main nitrogen and phosphorus removal mechanism, accounted for 44.9 ± 0.4% and 61.6 ± 0.5% of total inlet nitrogen and phosphorus, respectively. Microscopic analysis showed the main algae species in the bioreactor were filamentous blue-green algae. Furthermore, denaturing gradient gel electrophoresis and 16S rDNA gene sequencing revealed that the main bacteria present in the photobioreactor were consortia with sequences similar to those of Flavobacteria, Gammaproteobacteria, Bacteroidia and Betaproteobacteria. This study explores a better understanding of an algae-bacteria system and offers new information on further usage of biomass accumulated during treatment.
                Bookmark

                Author and article information

                Journal
                Chemical Engineering Journal
                Chemical Engineering Journal
                Elsevier BV
                13858947
                January 2023
                January 2023
                : 456
                : 141070
                Article
                10.1016/j.cej.2022.141070
                183cbf80-c99b-41fa-8f4f-2bc8faed9c1b
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article