Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      HIV-associated Burkitt lymphoma

      , ,
      The Lancet Haematology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling.

          The distinction between Burkitt's lymphoma and diffuse large-B-cell lymphoma is unclear. We used transcriptional and genomic profiling to define Burkitt's lymphoma more precisely and to distinguish subgroups in other types of mature aggressive B-cell lymphomas. We performed gene-expression profiling using Affymetrix U133A GeneChips with RNA from 220 mature aggressive B-cell lymphomas, including a core group of 8 Burkitt's lymphomas that met all World Health Organization (WHO) criteria. A molecular signature for Burkitt's lymphoma was generated, and chromosomal abnormalities were detected with interphase fluorescence in situ hybridization and array-based comparative genomic hybridization. We used the molecular signature for Burkitt's lymphoma to identify 44 cases: 11 had the morphologic features of diffuse large-B-cell lymphomas, 4 were unclassifiable mature aggressive B-cell lymphomas, and 29 had a classic or atypical Burkitt's morphologic appearance. Also, five did not have a detectable IG-myc Burkitt's translocation, whereas the others contained an IG-myc fusion, mostly in simple karyotypes. Of the 176 lymphomas without the molecular signature for Burkitt's lymphoma, 155 were diffuse large-B-cell lymphomas. Of these 155 cases, 21 percent had a chromosomal breakpoint at the myc locus associated with complex chromosomal changes and an unfavorable clinical course. Our molecular definition of Burkitt's lymphoma clarifies and extends the spectrum of the WHO criteria for Burkitt's lymphoma. In mature aggressive B-cell lymphomas without a gene signature for Burkitt's lymphoma, chromosomal breakpoints at the myc locus were associated with an adverse clinical outcome. Copyright 2006 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular diagnosis of Burkitt's lymphoma.

            The distinction between Burkitt's lymphoma and diffuse large-B-cell lymphoma is crucial because these two types of lymphoma require different treatments. We examined whether gene-expression profiling could reliably distinguish Burkitt's lymphoma from diffuse large-B-cell lymphoma. Tumor-biopsy specimens from 303 patients with aggressive lymphomas were profiled for gene expression and were also classified according to morphology, immunohistochemistry, and detection of the t(8;14) c-myc translocation. A classifier based on gene expression correctly identified all 25 pathologically verified cases of classic Burkitt's lymphoma. Burkitt's lymphoma was readily distinguished from diffuse large-B-cell lymphoma by the high level of expression of c-myc target genes, the expression of a subgroup of germinal-center B-cell genes, and the low level of expression of major-histocompatibility-complex class I genes and nuclear factor-kappaB target genes. Eight specimens with a pathological diagnosis of diffuse large-B-cell lymphoma had the typical gene-expression profile of Burkitt's lymphoma, suggesting they represent cases of Burkitt's lymphoma that are difficult to diagnose by current methods. Among 28 of the patients with a molecular diagnosis of Burkitt's lymphoma, the overall survival was superior among those who had received intensive chemotherapy regimens instead of lower-dose regimens. Gene-expression profiling is an accurate, quantitative method for distinguishing Burkitt's lymphoma from diffuse large-B-cell lymphoma. Copyright 2006 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics.

              Burkitt's lymphoma (BL) can often be cured by intensive chemotherapy, but the toxicity of such therapy precludes its use in the elderly and in patients with endemic BL in developing countries, necessitating new strategies. The normal germinal centre B cell is the presumed cell of origin for both BL and diffuse large B-cell lymphoma (DLBCL), yet gene expression analysis suggests that these malignancies may use different oncogenic pathways. BL is subdivided into a sporadic subtype that is diagnosed in developed countries, the Epstein-Barr-virus-associated endemic subtype, and an HIV-associated subtype, but it is unclear whether these subtypes use similar or divergent oncogenic mechanisms. Here we used high-throughput RNA sequencing and RNA interference screening to discover essential regulatory pathways in BL that cooperate with MYC, the defining oncogene of this cancer. In 70% of sporadic BL cases, mutations affecting the transcription factor TCF3 (E2A) or its negative regulator ID3 fostered TCF3 dependency. TCF3 activated the pro-survival phosphatidylinositol-3-OH kinase pathway in BL, in part by augmenting tonic B-cell receptor signalling. In 38% of sporadic BL cases, oncogenic CCND3 mutations produced highly stable cyclin D3 isoforms that drive cell cycle progression. These findings suggest opportunities to improve therapy for patients with BL.
                Bookmark

                Author and article information

                Journal
                The Lancet Haematology
                The Lancet Haematology
                Elsevier BV
                23523026
                August 2020
                August 2020
                : 7
                : 8
                : e594-e600
                Article
                10.1016/S2352-3026(20)30126-5
                32735838
                185e2e73-6efe-4aa5-a89b-e0da0af4b7d4
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article