6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Suppression of Rotenone-Treated Human Breast Cancer Stem Cell Survival Using Survivin Inhibitor YM155 is Associated to Oxidative Stress Modulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Despite recent progress in molecular-targeted therapies, breast cancer remains the primary leading cause of cancer related death among women worldwide. Breast cancer stem cells (BCSCs) are believed to be responsible for therapy resistance and cancer recurrence. We recently demonstrated that human BCSCs (CD24-/CD44+) could survive better than their counterpart non-BCSCs (CD24-/CD44-) when treated with rotenone, possibly due to lower levels of reactive oxygen species (ROS) production, high expression of antioxidant manganese superoxide dismutase (MnSOD), and anti-apoptotic survivin. The aim of this study was to verify the role of survivin on human BCSCs survival under oxidative stress modulation by suppressing its expression using YM155, a survivin inhibitor.

          Methods:

          Human BCSCs (ALDH+ cells) were treated with YM155 for 24 h prior to treatment with rotenone for a further 6 h. We determined intracellular superoxide levels were determined using dihydroethidium assay, survivin and MnSOD expression using qRT-PCR, survivin protein level using ELISA, as well as cell viability using trypan blue exclusion and acridine orange/ethidium bromide apoptosis assay.

          Results:

          Suppression of survivin expression using YM155 could reduce the survival of rotenone-treated BCSCs, which may be associated with oxidative stress modulation, as shown by increased ROS levels and decreased MnSOD expression. We confirm that survivin is responsible for maintaining BCSCs survival under oxidative stress modulation. Furthermore, YM155 could modulate oxidative stress in BCSCs by reducing MnSOD expression and increasing ROS levels.

          Conclusion:

          YM155 treatment could be used to overcome BCSCs resistance to oxidative stress-based anticancer therapies.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A simple technique for quantifying apoptosis in 96-well plates

          Background Analyzing apoptosis has been an integral component of many biological studies. However, currently available methods for quantifying apoptosis have various limitations including multiple, sometimes cell-damaging steps, the inability to quantify live, necrotic and apoptotic cells at the same time, and non-specific detection (i.e. "false positive"). To overcome the shortcomings of current methods that quantify apoptosis in vitro and to take advantage of the 96-well plate format, we present here a modified ethidium bromide and acridine orange (EB/AO) staining assay, which may be performed entirely in a 96-well plate. Our method combines the advantages of the 96-well format and the conventional EB/AO method for apoptotic quantification. Results We compared our method and the conventional EB/AO method for quantifying apoptosis of suspension cells (Jurkat) and adherent cells (A375) under normal growth and apoptosis-inducing conditions. We found that our new EB/AO method achieved quantification results comparable to those produced using the conventional EB/AO method for both suspension and adherent cells. Conclusion By eliminating the detaching and washing steps, our method drastically reduces the time needed to perform the test, minimizes damage to adherent cells, and decreases the possibility of losing floating cells. Overall, our method is an improvement over the currently available techniques especially for adherent cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis

            CD44/CD24 and ALDH1 are widely used cancer stem cell (CSC) markers in breast cancer. However, their expression is not always consistent even in the same subtype of breast cancer. Systematic comparison of their functions is still lacking. We investigated the expression of CD44, CD24 and ALDH1 in different subtypes of breast cancer cells, and explored their relationship with cancer progression. We defined a parameter CD44/CD24 ratio to present the expression level of CD44 and CD24 and found that high CD44/CD24 ratio and ALDH1+ are both indicators for cancer malignancy, but play different functions during tumor progression. High CD44/CD24 ratio is more related to cell proliferation and tumorigenesis, which is confirmed by mammosphere formation and tumorigenesis in xenotransplanted mice. ALDH1+ is a stronger indicator for cell migration and tumor metastasis. Suppression of CD44 and ALDH1 by siRNA led to decreased tumorigenicity and cell migration capacity. The combination of high CD44/CD24 ratio and ALDH1+ would be a more reliable way to characterize CSCs. Moreover, both high CD44/CD24 ratio and ALDH1+ were conserved during metastasis, from the primary tumors to the circulating tumor cells (CTCs) and the distant metastases, suggesting the significant value of these CSC markers in assisting cancer detection, prognostic evaluation, and even cancer therapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Survivin and IAP proteins in cell-death mechanisms.

              From the realization that cell number homoeostasis is fundamental to the biology of all metazoans, and that deregulation of this process leads to human diseases, enormous interest has been devoted over the last two decades to map the requirements of cell death and cell survival. This effort has led to tangible progress, and we can now chart with reasonable accuracy complex signalling circuitries controlling cell-fate decisions. Some of this knowledge has translated into novel therapeutics, and the outcome of these strategies, especially in cancer, is eagerly awaited. However, the function of cell-death modifiers have considerably broadened over the last few years, and these molecules are increasingly recognized as arbiters of cellular homoeostasis, from cell division, to intracellular signalling to cellular adaptation. This panoply of functions is best exemplified by members of the IAP (inhibitor of apoptosis) gene family, molecules originally narrowly defined as endogenous caspase inhibitors, but now firmly positioned at the crossroads of multiple normal and transformed cellular responses.
                Bookmark

                Author and article information

                Journal
                Asian Pac J Cancer Prev
                Asian Pac J Cancer Prev
                APJCP
                Asian Pacific Journal of Cancer Prevention : APJCP
                West Asia Organization for Cancer Prevention (Iran )
                1513-7368
                2476-762X
                September 2020
                : 21
                : 9
                : 2631-2637
                Affiliations
                [1 ] Molecular Biology and Proteomics Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia.
                [2 ] Master’s Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia.
                [3 ] Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia.
                Author notes
                [* ]For Correspondence: septelia.inawati@ui.ac.id
                Article
                10.31557/APJCP.2020.21.9.2631
                7779466
                32986362
                18f7c95f-6735-4c31-8f68-6241eb500fd9

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License, ( http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 February 2020
                : 19 September 2020
                Categories
                Research Article

                breast cancer stem cells,oxidative stress,surviving,ym155

                Comments

                Comment on this article