42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reference genes selection for transcript normalization in kenaf ( Hibiscus cannabinus L.) under salinity and drought stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kenaf ( Hibiscus cannabinus) is an economic and ecological fiber crop but suffers severe losses in fiber yield and quality under the stressful conditions of excess salinity and drought. To explore the mechanisms by which kenaf responds to excess salinity and drought, gene expression was performed at the transcriptomic level using RNA-seq. Thus, it is crucial to have a suitable set of reference genes to normalize target gene expression in kenaf under different conditions using real-time quantitative reverse transcription-PCR (qRT-PCR). In this study, we selected 10 candidate reference genes from the kenaf transcriptome and assessed their expression stabilities by qRT-PCR in 14 NaCl- and PEG-treated samples using geNorm, NormFinder, and BestKeeper. The results indicated that TUBα and 18S rRNA were the optimum reference genes under conditions of excess salinity and drought in kenaf. Moreover, TUBα and 18S rRNA were used singly or in combination as reference genes to validate the expression levels of WRKY28 and WRKY32 in NaCl- and PEG-treated samples by qRT-PCR. The results further proved the reliability of the two selected reference genes. This work will benefit future studies on gene expression and lead to a better understanding of responses to excess salinity and drought in kenaf.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Abiotic stress, the field environment and stress combination.

          Farmers and breeders have long known that often it is the simultaneous occurrence of several abiotic stresses, rather than a particular stress condition, that is most lethal to crops. Surprisingly, the co-occurrence of different stresses is rarely addressed by molecular biologists that study plant acclimation. Recent studies have revealed that the response of plants to a combination of two different abiotic stresses is unique and cannot be directly extrapolated from the response of plants to each of the different stresses applied individually. Tolerance to a combination of different stress conditions, particularly those that mimic the field environment, should be the focus of future research programs aimed at developing transgenic crops and plants with enhanced tolerance to naturally occurring environmental conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance.

            Abiotic stresses, such as drought, salinity, extreme temperatures, chemical toxicity and oxidative stress are serious threats to agriculture and the natural status of the environment. Increased salinization of arable land is expected to have devastating global effects, resulting in 30% land loss within the next 25 years, and up to 50% by the year 2050. Therefore, breeding for drought and salinity stress tolerance in crop plants (for food supply) and in forest trees (a central component of the global ecosystem) should be given high research priority in plant biotechnology programs. Molecular control mechanisms for abiotic stress tolerance are based on the activation and regulation of specific stress-related genes. These genes are involved in the whole sequence of stress responses, such as signaling, transcriptional control, protection of membranes and proteins, and free-radical and toxic-compound scavenging. Recently, research into the molecular mechanisms of stress responses has started to bear fruit and, in parallel, genetic modification of stress tolerance has also shown promising results that may ultimately apply to agriculturally and ecologically important plants. The present review summarizes the recent advances in elucidating stress-response mechanisms and their biotechnological applications. Emphasis is placed on transgenic plants that have been engineered based on different stress-response mechanisms. The review examines the following aspects: regulatory controls, metabolite engineering, ion transport, antioxidants and detoxification, late embryogenesis abundant (LEA) and heat-shock proteins.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Drought and Salt Tolerance in Plants

                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                26 November 2015
                2015
                : 3
                : e1347
                Affiliations
                [1 ]Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University , Fuzhou, China
                [2 ]College of Life Sciences, Ningde Normal University , Ningde, China
                [3 ]College of Life Sciences, Shangrao Normal University , Shangrao, China
                [4 ]Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences , Changsha, China
                Article
                1347
                10.7717/peerj.1347
                4671189
                26644967
                1919ef00-9f26-45aa-9fba-10a4e399e7f0
                © 2015 Niu et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 30 July 2015
                : 4 October 2015
                Funding
                Funded by: 948 project of the Agricultural Department of China
                Award ID: 2013-Z70
                Funded by: National bast fiber germplasm resources project of China
                Award ID: K47NI201A
                Funded by: National bast fiber research system of China
                Award ID: CARS-19-E06
                This work was funded by the 948 project of the Agricultural Department of China (2013-Z70), National bast fiber germplasm resources project of China (K47NI201A) and National bast fiber research system of China (CARS-19-E06). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Molecular Biology
                Plant Science

                reference gene,salinity and drought stress,gene expression,kenaf (hibiscus cannabinus l.)

                Comments

                Comment on this article