Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacokinetic Studies in Elasmobranchs: Meloxicam Administered at 0.5 mg/kg Using Intravenous, Intramuscular, and Oral Routes to Nusehound Sharks ( Scyliorhinus stellaris)

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Infectious and inflammatory diseases are the most frequently diagnosed pathologies in elasmobranchs maintained under human care. Non-steroidal anti-inflammatory drugs (NSAIDs) are frequently used in veterinary medicine for their anti-inflammatory, analgesic, and antipyretic properties. Meloxicam is a commonly prescribed NSAID in elasmobranchs, but there are still no published pharmacokinetic (PK) studies supporting its use in this group of animals. In this study, meloxicam was administered at a single dose of 0.5 mg/kg to eight healthy adult nursehound sharks ( Scyliorhinus stellaris) intravenously (IV), intramuscularly (IM), and orally (PO), with a minimum 4-week washout period between administrations. Blood samples were obtained both beforehand and at predetermined times after each administration. Plasma concentrations were measured using a validated high performance liquid chromatography method, and PK data was obtained using a non-compartmental analysis. Meloxicam administered orally did not produce detectable concentrations in blood plasma, while mean peak plasma concentration was 0.38 ± 0.08 μg/ml after IM administration. The mean terminal half-life was 10.71 ± 2.77 h and 11.27 ± 3.96 h for IV and IM injections, respectively. The area under the curve extrapolated to infinity was 11.37 ± 2.29 h·μg/ml after IV injections and 5.98 ± 0.90 h·μg/ml after IM injections. Meloxicam administered IM had a mean absolute bioavailability of 56.22 ± 13.29%. These numbers support meloxicam as a promising drug to be used IM in nursehounds, questions the efficacy of its single PO use in elasmobranchs, elucidate the need for higher dosage regimes, and evidence the need for further PK studies in sharks and rays.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs): Cyclooxygenase (COX) Inhibition and Beyond

          Purpose. NSAIDs constitute an important class of drugs with therapeutic applications that have spanned several centuries. Treatment of inflammatory conditions such as rheumatoid arthritis (RA) and osteoarthritis (OA) starting from the classic drug aspirin to the recent rise and fall of selective COX-2 inhibitors has provided an enthralling evolution. Efforts to discover an ultimate magic bullet to treat inflammation continues to be an important drug design challenge. This review traces the origins of NSAIDs, their mechanism of action at the molecular level such as cyclooxygenase (COX) inhibition, development of selective COX-2 inhibitors, their adverse cardiovascular effects, and some recent developments targeted to the design of effective anti-inflammatory agents with reduced side effects. Methods. Literature data is presented describing important discoveries pertaining to the sequential development of classical NSAIDs and then selective COX-2 inhibitors, their mechanism of action, the structural basis for COX inhibition, and recent discoveries. Results. A brief history of the development of NSAIDs and the market withdrawal of selective COX-2 inhibitors is explained, followed by the description of prostaglandin biosynthesis, COX isoforms, structure and function. The structural basis for COX-1 and COX-2 inhibition is described along with methods used to evaluate COX-1/COX-2 inhibition. This is followed by a section that encompasses the major chemical classes of selective COX-2 inhibitors. The final section describes briefly some of the recent advances toward developing effective anti-inflammatory agents such as nitric oxide donor NO-NSAIDs, dual COX/LOX inhibitors and anti-TNF therapy. Conclusions. A great deal of progress has been made toward developing novel anti-inflammatory agents. In spite of the tremendous advances in the last decade, the design and development of a safe, effective and economical therapy for treating inflammatory conditions still presents a major challenge.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Fish Sedation, Anesthesia, Analgesia, and Euthanasia: Considerations, Methods, and Types of Drugs

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pharmacodynamics and pharmacokinetics of nonsteroidal anti-inflammatory drugs in species of veterinary interest.

              This review summarises selected aspects of the pharmacokinetics (PK) and pharmacodynamics (PD) of nonsteroidal anti-inflammatory drugs (NSAIDs). It is not intended to be comprehensive, in that it covers neither minor species nor several important aspects of NSAID PD. The limited objective of the review is to summarise those aspects of NSAID PK and PD, which are important to an understanding of PK-PD integration and PK-PD modelling (the subject of the next review in this issue). The general features of NSAID PK are: usually good bioavailability from oral, intramuscular and subcutaneous administration routes (but with delayed absorption in horses and ruminants after oral dosing), a high degree of binding to plasma protein, low volumes of distribution, limited excretion of administered dose as parent drug in urine, marked inter-species differences in clearance and elimination half-life and ready penetration into and slow clearance from acute inflammatory exudate. The therapeutic effects of NSAIDs are exerted both locally (at peripheral inflammatory sites) and centrally. There is widespread acceptance that the principal mechanism of action (both PD and toxicodynamics) of NSAIDs at the molecular level comprises inhibition of cyclooxygenase (COX), an enzyme in the arachidonic acid cascade, which generates inflammatory mediators of the prostaglandin group. However, NSAIDs possess also many other actions at the molecular level. Two isoforms of COX have been identified. Inhibition of COX-1 is likely to account for most of the side-effects of NSAIDs (gastrointestinal irritation, renotoxicity and inhibition of blood clotting) but a minor contribution also to some of the therapeutic effects (analgesic and anti-inflammatory actions) cannot be excluded. Inhibition of COX-2 accounts for most and possibly all of the therapeutic effects of NSAIDs. Consequently, there has been an intensive search to identify and develop drugs with selectivity for inhibition of COX-2. Whole blood in vitro assays are used to investigate quantitatively the three key PD parameters (efficacy, potency and sensitivity) for NSAID inhibition of COX isoforms, providing data on COX-1:COX-2 inhibition ratios. Limited published data point to species differences in NSAID-induced COX inhibition, for both potency and potency ratios. Members of the 2-arylpropionate sub-groups of NSAIDs exist in two enantiomeric forms [R-(-) and S-(+)] and are licensed as racemic mixtures. For these drugs there are marked enantiomeric differences in PK and PD properties of individual drugs in a given species, as well as important species differences in both PK and PD properties.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Vet Sci
                Front Vet Sci
                Front. Vet. Sci.
                Frontiers in Veterinary Science
                Frontiers Media S.A.
                2297-1769
                23 March 2022
                2022
                : 9
                : 845555
                Affiliations
                [1] 1Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid , Madrid, Spain
                [2] 2Fundación Oceanogràfic de la Comunitat Valenciana , Valencia, Spain
                [3] 3Veterinary Services, Oceanogràfic , Valencia, Spain
                Author notes

                Edited by: Chi-Chung Chou, National Chung Hsing University, Taiwan

                Reviewed by: Naseer Ahmad Kutchy, St. George's University, Grenada; Gregory Aldo Lewbart, North Carolina State University, United States; Pierre-Louis Toutain, Ecole Nationale Vétérinaire de Toulouse, France

                *Correspondence: Pablo Morón-Elorza p-moron@ 123456hotmail.com

                This article was submitted to Veterinary Pharmacology and Toxicology, a section of the journal Frontiers in Veterinary Science

                Article
                10.3389/fvets.2022.845555
                8994032
                35411304
                192eec71-45e7-4060-b944-0eef70c1f85b
                Copyright © 2022 Morón-Elorza, Rojo-Solís, Álvaro-Álvarez, Valls-Torres, García-Párraga and Encinas.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 December 2021
                : 15 February 2022
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 47, Pages: 9, Words: 6904
                Funding
                Funded by: Universidad Complutense de Madrid, doi 10.13039/501100002911;
                Categories
                Veterinary Science
                Brief Research Report

                meloxicam,shark,chondrichthyan,pharmacology,pharmacokinetics,non-steroidal anti-inflammatory drug (nsaid),half-life (t1/2)

                Comments

                Comment on this article