0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Resistive Sensors for Smart Objects: Analysis on Printing Techniques

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: not found
          • Article: not found

          A review of 4D printing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MXene and MXene-based composites: synthesis, properties and environment-related applications

            This review highlights recent advances of MXenes and their composites in the environment-related applications including catalysis, water purification and sensors. In recent years, a new large family of two dimensional transition metal carbides, carbonitrides, and nitrides, so-called MXenes, have grabbed considerable attention, owing to their many fascinating physical and chemical properties that are closely related to the rich diversity of their elemental compositions and surface terminations. In particular, it is easy for MXenes to form composites with other materials such as polymers, oxides, and carbon nanotubes, which further provides an effective way to tune the properties of MXenes for various applications. Not only have MXenes and MXene-based composites come into prominence as electrode materials in the energy storage field as is widely known, but they have also shown great potential in environment-related applications including electro/photocatalytic water splitting, photocatalytic reduction of carbon dioxide, water purification and sensors, thanks to their high conductivity, reducibility and biocompatibility. In this review, we summarize the synthesis and properties of MXenes and MXene-based composites and highlight their recent advances in environment-related applications. Challenges and perspectives for future research are also outlined.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A comprehensive review on droplet-based bioprinting: Past, present and future.

              Droplet-based bioprinting (DBB) offers greater advantages due to its simplicity and agility with precise control on deposition of biologics including cells, growth factors, genes, drugs and biomaterials, and has been a prominent technology in the bioprinting community. Due to its immense versatility, DBB technology has been adopted by various application areas, including but not limited to, tissue engineering and regenerative medicine, transplantation and clinics, pharmaceutics and high-throughput screening, and cancer research. Despite the great benefits, the technology currently faces several challenges such as a narrow range of available bioink materials, bioprinting-induced cell damage at substantial levels, limited mechanical and structural integrity of bioprinted constructs, and restrictions on the size of constructs due to lack of vascularization and porosity. This paper presents a first-time review of DBB and comprehensively covers the existing DBB modalities including inkjet, electrohydrodynamic, acoustic, and micro-valve bioprinting. The recent notable studies are highlighted, the relevant bioink biomaterials and bioprinters are expounded, the application areas are presented, and the future prospects are provided to the reader.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                IEEE Transactions on Instrumentation and Measurement
                IEEE Trans. Instrum. Meas.
                Institute of Electrical and Electronics Engineers (IEEE)
                0018-9456
                1557-9662
                2022
                2022
                : 71
                : 1-15
                Affiliations
                [1 ]Department of Information Engineering, University of Brescia, Brescia, Italy
                Article
                10.1109/TIM.2022.3181941
                1931ed9f-9f66-49a0-a886-49d6cb1744fd
                © 2022

                https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                History

                Comments

                Comment on this article