0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanoengineering of conductively coupled metallic nanoparticles towards selective resonance modes within the near-infrared regime

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this work, the mode transition effect of different plasmonic resonances in linked dimers by a conductive junction is numerically investigated.Without the junction, the dimer supports a single dipolar bonding plasmon mode, while two new resonance modes, a screened bonding dipolar mode and a low energy charge transfer plasmon mode, emerge when two nanoparticles are linked via a bridge. Such effect is proved to be unrelated to the shape of the nanoparticles, whether sphere, core-shell or nanoegg. However, it was found that the status of each specific resonance mode is profoundly influenced by the shape of nanoparticles. Furthermore, a detailed discussion of mechanisms of controlling plasmon modes, specially charge transfer mode, and tuning their corresponding spectra in bridged nanoparticles as functions of nanoparticle parameters and junction conductance is presented. These results show that the optical response of the dimer is highly sensitive to changes in the inter-particle gap. While the capacitive dimer provides a strong hotstop, the conductive dimer leads to highly controllable low energy plasmon mode at the mid-infrared region appropriate for novel applications. These findings may serve as an important guide for optical properties of linked nanoparticles as well as understanding the transition between the capacitive and conductive coupling.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          Localized surface plasmon resonance sensors.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Present and Future of Surface-Enhanced Raman Scattering

            The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasmonics for improved photovoltaic devices.

              The emerging field of plasmonics has yielded methods for guiding and localizing light at the nanoscale, well below the scale of the wavelength of light in free space. Now plasmonics researchers are turning their attention to photovoltaics, where design approaches based on plasmonics can be used to improve absorption in photovoltaic devices, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers, and yielding new options for solar-cell design. In this review, we survey recent advances at the intersection of plasmonics and photovoltaics and offer an outlook on the future of solar cells based on these principles.
                Bookmark

                Author and article information

                Contributors
                sadighi@sharif.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                12 May 2022
                12 May 2022
                2022
                : 12
                : 7829
                Affiliations
                [1 ]GRID grid.412553.4, ISNI 0000 0001 0740 9747, Department of Physics, , Sharif University of Technology, ; Tehran, Iran
                [2 ]GRID grid.440821.b, ISNI 0000 0004 0550 753X, Department of Laser and Optical Engineering, , University of Bonab, ; Bonab, Iran
                Article
                11539
                10.1038/s41598-022-11539-4
                9098514
                35550525
                19341a97-33a6-4423-b386-7116b669161f
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 December 2021
                : 8 April 2022
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                mathematics and computing,nanoscience and technology,optics and photonics
                Uncategorized
                mathematics and computing, nanoscience and technology, optics and photonics

                Comments

                Comment on this article