70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Accuracy of malaria rapid diagnostic tests in community studies and their impact on treatment of malaria in an area with declining malaria burden in north-eastern Tanzania

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Despite some problems related to accuracy and applicability of malaria rapid diagnostic tests (RDTs), they are currently the best option in areas with limited laboratory services for improving case management through parasitological diagnosis and reducing over-treatment. This study was conducted in areas with declining malaria burden to assess; 1) the accuracy of RDTs when used at different community settings, 2) the impact of using RDTs on anti-malarial dispensing by community-owned resource persons (CORPs) and 3) adherence of CORPs to treatment guidelines by providing treatment based on RDT results.

          Methods

          Data were obtained from: 1) a longitudinal study of passive case detection of fevers using CORPs in six villages in Korogwe; and 2) cross-sectional surveys (CSS) in six villages of Korogwe and Muheza districts, north-eastern, Tanzania. Performance of RDTs was compared with microscopy as a gold standard, and factors affecting their accuracy were explored using a multivariate logistic regression model.

          Results

          Overall sensitivity and specificity of RDTs in the longitudinal study (of 23,793 febrile cases; 18,154 with microscopy and RDTs results) were 88.6% and 88.2%, respectively. In the CSS, the sensitivity was significantly lower (63.4%; χ 2 = 367.7, p < 0.001), while the specificity was significantly higher (94.3%; χ 2 = 143.1, p < 0.001) when compared to the longitudinal study. As determinants of sensitivity of RDTs in both studies, parasite density of < 200 asexual parasites/μl was significantly associated with high risk of false negative RDTs (OR≥16.60, p < 0.001), while the risk of false negative test was significantly lower among cases with fever (axillary temperature ≥37.5°C) (OR ≤ 0.63, p ≤ 0.027). The risk of false positive RDT (as a determinant of specificity) was significantly higher in cases with fever compared to afebrile cases (OR≥2.40, p < 0.001). Using RDTs reduced anti-malarials dispensing from 98.9% to 32.1% in cases aged ≥5 years.

          Conclusion

          Although RDTs had low sensitivity and specificity, which varied widely depending on fever and parasite density, using RDTs reduced over-treatment with anti-malarials significantly. Thus, with declining malaria prevalence, RDTs will potentially identify majority of febrile cases with parasites and lead to improved management of malaria and non-malaria fevers.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid diagnostic tests for malaria parasites.

          Malaria presents a diagnostic challenge to laboratories in most countries. Endemic malaria, population movements, and travelers all contribute to presenting the laboratory with diagnostic problems for which it may have little expertise available. Drug resistance and genetic variation has altered many accepted morphological appearances of malaria species, and new technology has given an opportunity to review available procedures. Concurrently the World Health Organization has opened a dialogue with scientists, clinicians, and manufacturers on the realistic possibilities for developing accurate, sensitive, and cost-effective rapid diagnostic tests for malaria, capable of detecting 100 parasites/microl from all species and with a semiquantitative measurement for monitoring successful drug treatment. New technology has to be compared with an accepted "gold standard" that makes comparisons of sensitivity and specificity between different methods. The majority of malaria is found in countries where cost-effectiveness is an important factor and ease of performance and training is a major consideration. Most new technology for malaria diagnosis incorporates immunochromatographic capture procedures, with conjugated monoclonal antibodies providing the indicator of infection. Preferred targeted antigens are those which are abundant in all asexual and sexual stages of the parasite and are currently centered on detection of HRP-2 from Plasmodium falciparum and parasite-specific lactate dehydrogenase or Plasmodium aldolase from the parasite glycolytic pathway found in all species. Clinical studies allow effective comparisons between different formats, and the reality of nonmicroscopic diagnoses of malaria is considered.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Laboratory medicine in Africa: a barrier to effective health care.

            Providing health care in sub-Saharan Africa is a complex problem. Recent reports call for more resources to assist in the prevention and treatment of infectious diseases that affect this population, but policy makers, clinicians, and the public frequently fail to understand that diagnosis is essential to the prevention and treatment of disease. Access to reliable diagnostic testing is severely limited in this region, and misdiagnosis commonly occurs. Understandably, allocation of resources to diagnostic laboratory testing has not been a priority for resource-limited health care systems, but unreliable and inaccurate laboratory diagnostic testing leads to unnecessary expenditures in a region already plagued by resource shortages, promotes the perception that laboratory testing is unhelpful, and compromises patient care. We explore the barriers to implementing consistent testing within this region and illustrate the need for a more comprehensive approach to the diagnosis of infectious diseases, with an emphasis on making laboratory testing a higher priority.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Changes in the burden of malaria in sub-Saharan Africa.

              The burden of malaria in countries in sub-Saharan Africa has declined with scaling up of prevention, diagnosis, and treatment. To assess the contribution of specific malaria interventions and other general factors in bringing about these changes, we reviewed studies that have reported recent changes in the incidence or prevalence of malaria in sub-Saharan Africa. Malaria control in southern Africa (South Africa, Mozambique, and Swaziland) began in the 1980s and has shown substantial, lasting declines linked to scale-up of specific interventions. In The Horn of Africa, Ethiopia and Eritrea have also experienced substantial decreases in the burden of malaria linked to the introduction of malaria control measures. Substantial increases in funding for malaria control and the procurement and distribution of effective means for prevention and treatment are associated with falls in malaria burden. In central Africa, little progress has been documented, possibly because of publication bias. In some countries a decline in malaria incidence began several years before scale-up of malaria control. In other countries, the change from a failing drug (chloroquine) to a more effective drug (sulphadoxine plus pyrimethamine or an artemisinin combination) led to immediate improvements; in others malaria reduction seemed to be associated with the scale-up of insecticide-treated bednets and indoor residual spraying. 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Malar J
                Malaria Journal
                BioMed Central
                1475-2875
                2011
                26 June 2011
                : 10
                : 176
                Affiliations
                [1 ]National Institute for Medical Research, Tanga Medical Research Centre, P.O Box 5004, Tanga, Tanzania
                [2 ]Centre for Medical Parasitology at the Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Denmark
                Article
                1475-2875-10-176
                10.1186/1475-2875-10-176
                3145609
                21703016
                195b66b7-20d2-4ff7-a267-120885faa3ec
                Copyright ©2011 Ishengoma et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 March 2011
                : 26 June 2011
                Categories
                Research

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article