3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A sublethal concentration of afidopyropen suppresses the population growth of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae)

      , , , ,
      Journal of Integrative Agriculture
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          The sublethal effects of pesticides on beneficial arthropods.

          Traditionally, measurement of the acute toxicity of pesticides to beneficial arthropods has relied largely on the determination of an acute median lethal dose or concentration. However, the estimated lethal dose during acute toxicity tests may only be a partial measure of the deleterious effects. In addition to direct mortality induced by pesticides, their sublethal effects on arthropod physiology and behavior must be considered for a complete analysis of their impact. An increasing number of studies and methods related to the identification and characterization of these effects have been published in the past 15 years. Review of sublethal effects reported in published literature, taking into account recent data, has revealed new insights into the sublethal effects of pesticides including effects on learning performance, behavior, and neurophysiology. We characterize the different types of sublethal effects on beneficial arthropods, focusing mainly on honey bees and natural enemies, and we describe the methods used in these studies. Finally, we discuss the potential for developing experimental approaches that take into account these sublethal effects in integrated pest management and the possibility of integrating their evaluation in pesticide registration procedures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The global status of insect resistance to neonicotinoid insecticides.

            The first neonicotinoid insecticide, imidacloprid, was launched in 1991. Today this class of insecticides comprises at least seven major compounds with a market share of more than 25% of total global insecticide sales. Neonicotinoid insecticides are highly selective agonists of insect nicotinic acetylcholine receptors and provide farmers with invaluable, highly effective tools against some of the world's most destructive crop pests. These include sucking pests such as aphids, whiteflies, and planthoppers, and also some coleopteran, dipteran and lepidopteran species. Although many insect species are still successfully controlled by neonicotinoids, their popularity has imposed a mounting selection pressure for resistance, and in several species resistance has now reached levels that compromise the efficacy of these insecticides. Research to understand the molecular basis of neonicotinoid resistance has revealed both target-site and metabolic mechanisms conferring resistance. For target-site resistance, field-evolved mutations have only been characterized in two aphid species. Metabolic resistance appears much more common, with the enhanced expression of one or more cytochrome P450s frequently reported in resistant strains. Despite the current scale of resistance, neonicotinoids remain a major component of many pest control programmes, and resistance management strategies, based on mode of action rotation, are of crucial importance in preventing resistance becoming more widespread. In this review we summarize the current status of neonicotinoid resistance, the biochemical and molecular mechanisms involved, and the implications for resistance management.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Life-Table Analysis Incorporating Both Sexes and Variable Development Rates Among Individuals

              H-S Chi (1988)
                Bookmark

                Author and article information

                Journal
                Journal of Integrative Agriculture
                Journal of Integrative Agriculture
                Elsevier BV
                20953119
                July 2022
                July 2022
                : 21
                : 7
                : 2055-2064
                Article
                10.1016/S2095-3119(21)63714-0
                1a35ee57-b7e4-4951-8e0d-f53acce20c83
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article