21
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Epidemiology and Health Impacts of Neuroendocrine Tumors

      Submit here before August 30, 2024

      About Neuroendocrinology: 3.2 Impact Factor I 8.3 CiteScore I 1.009 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Polyinosinic-Polycytidylic Acid Induces CXCL1 Expression in Cultured hCMEC/D3 Human Cerebral Microvascular Endothelial Cells

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: Brain microvascular endothelial cells are integral components of the blood-brain barrier and play a role in protecting the brain from invading microbes. CXC motif chemokine ligand 1 (CXCL1) induces the chemotaxis of neutrophils, and neutrophils are important in host defense in the brain. However, dysregulated neutrophil infiltration leads to brain diseases. Toll-like receptor 3 (TLR3) is a pattern recognition receptor that recognizes viral double-stranded RNA (dsRNA). The aim of this study was to investigate the effect of an TLR3 agonist on the expression of CXCL1 in brain vascular endothelial cells. Methods: hCMEC/D3 human cerebral microvascular endothelial cells were cultured and treated with polyinosinic-polycytidylic acid (poly IC), a potent synthetic dsRNA agonist for TLR3. The production of CXCL1 mRNA and protein was assessed by real-time RT-PCR and ELISA. The expression of CXCL1 was compared with that of CXCL8. The effect of pretreatment of cells with a NF-κB inhibitor (SN50), a p38 mitogen-activated protein kinase (MAPK) inhibitor (SB203580), a c-Jun N-terminal kinase (JNK) inhibitor (SP600125), an interferon (IFN) regulatory factor 3 inhibitor (MRT67307), and an anti-type I IFN-neutralizing antibody mixture was examined. Phosphorylation of p38 was examined using Western blotting. Results: Treating cultured hCMEC/D3 human cells with poly IC induced the expression of CXCL1 as well as another chemokine CXCL8. Pretreatment of cells with SN50, SB203580, and SP600125 decreased the induction of CXCL1 by poly IC. However, it was not affected by MRT67307 or by an anti-type I IFN-neutralizing antibody mixture. Pretreatment of cells with SN50 decreased the poly IC-induced phosphorylation of p38. Conclusions: Poly IC induces the expression of CXCL1 in hCMEC/D3 cells. NF-κB, p38 MAPK, and JNK are involved in this reaction. There is a cross-talk between NF-κB and p38, and NF-κB partially regulates phosphorylation of p38. CXCL1 produced by brain microvascular endothelial cells may contribute to the brain’s defense against viral infection and various neurological diseases associated with neutrophil accumulation.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Sensing of viral infection and activation of innate immunity by toll-like receptor 3.

          Toll-like receptors (TLRs) form a major group of transmembrane receptors that are involved in the detection of invading pathogens. Double-stranded RNA is a marker for viral infection that is recognized by TLR3. TLR3 triggering activates specific signaling pathways that culminate in the activation of NF-kappaB and IRF3 transcription factors, as well as apoptosis, enabling the host to mount an effective innate immune response through the induction of cytokines, chemokines, and other proinflammatory mediators. In this review, we describe the paradoxical role of TLR3 in innate immunity against different viruses and in viral pathogenesis but also the evidence for TLR3 as a "danger" receptor in nonviral diseases. We also discuss the structure and cellular localization of TLR3, as well as the complex signaling and regulatory events that contribute to TLR3-mediated immune responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CXCL1/CXCR2 signaling in pathological pain: Role in peripheral and central sensitization.

            Pathological pain conditions can be triggered after peripheral nerve injury and/or inflammation. It is associated with plasticity of nociceptive pathway in which pain is prolonged even after healing of the injured tissue. Generally combinations of analgesic drugs are not sufficient to achieve selective palliation from chronic pain, besides causing a greater number of side effects. In order to identify novel alternatives for more effective treatments, it is necessary to clarify the underlying mechanisms of pathological pain. It is well established that there are two main components in pathological pain development and maintenance: (i) primary sensory neuron sensitization (peripheral sensitization), and (ii) central sensitization. In both components cytokines and chemokines act as key mediators in pain modulation. CXCL1 is a chemokine that promote both nociceptor and central sensitization via its main receptor CXCR2, which is a promising target for novel analgesic drugs. Here, we reviewed and discussed the role of the CXCL1/CXCR2 signaling axis in pathological pain conditions triggered by either peripheral inflammation or nerve injury.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expression and regulation of toll-like receptors in cerebral endothelial cells.

              Cerebral endothelial cells - the principal components of the blood-brain barrier (BBB) - fulfill several important functions in the central nervous system (CNS). They form an active interface between blood and neuronal tissue and play a key role in the maintenance of the homeostasis of the CNS. Infections caused by different pathogens are often associated with systemic symptoms and may compromise the functional integrity of the BBB as well. In the mediation of the systemic effect of pathogens Toll-like receptors (TLRs) play a significant role. TLRs are a type of pattern recognition receptor and recognize molecules that are broadly shared by pathogens but distinguishable from host molecules. TLRs are broadly distributed on cells of the immune system and function as primary sensors of invading pathogens. There is also growing experimental evidence indicating that Toll-like receptors are expressed on different non-immune cell types as well, like epithelial or endothelial cells. Here we demonstrate the expression of TLR2, TLR3, TLR4 and TLR6 on rat and human cerebral endothelial cells. Oxidative stress significantly upregulated the expression of these receptors whereas TNF-alpha upregulated the expression of TLR2 and TLR3. Furthermore we have shown, that activation of TLR2/6 leads to an increased permeability which is accompanied by a downregulation of occludin and claudin-5 expression and disappearance of these tight junction proteins from the cell membrane. Changes in occludin expression and localization could be inhibited by the ERK1/2 inhibitor U0126. Our results suggest a significant role of the cerebral endothelium in mediation of the neural effects of different inflammatory processes. Copyright 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                NIM
                Neuroimmunomodulation
                10.1159/issn.1021-7401
                Neuroimmunomodulation
                S. Karger AG
                1021-7401
                1423-0216
                2020
                July 2020
                15 April 2020
                : 27
                : 1
                : 38-47
                Affiliations
                [_a] aDepartment of Neurosurgery, Hirosaki University School of Medicine, Hirosaki, Japan
                [_b] bDepartment of Vascular Biology, Hirosaki University School of Medicine, Hirosaki, Japan
                Author notes
                *Tadaatsu Imaizumi, Department of Vascular Biology, Hirosaki University School of Medicine, 5 Zaifucho, Hirosaki 036-8562 (Japan), timaizum@hirosaki-u.ac.jp
                Article
                506482 Neuroimmunomodulation 2020;27:38–47
                10.1159/000506482
                32294654
                1a71726b-ad18-4fc8-a141-323a3a4f68ec
                © 2020 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 20 November 2019
                : 06 February 2020
                Page count
                Figures: 8, Pages: 10
                Categories
                Research Article

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                TLR3,Poly IC,Blood-brain barrier,CXCL1,Brain capillary vascular endothelial cells

                Comments

                Comment on this article