29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Aedes aegypti mosquito is a significant public health threat, as it is the main vector of dengue and chikungunya viruses. Disease control efforts could be enhanced through reproductive manipulation of these vectors. Previous work has revealed a relationship between male seminal fluid proteins transferred to females during mating and female post-mating physiology and behavior. To better understand this interplay, we used short-read RNA sequencing to identify gene expression changes in the lower reproductive tract of females in response to mating. We characterized mRNA expression in virgin and mated females at 0, 6 and 24 hours post-mating (hpm) and identified 364 differentially abundant transcripts between mating status groups. Surprisingly, 60 transcripts were more abundant at 0hpm compared to virgin females, suggesting transfer from males. Twenty of these encode known Ae. aegypti seminal fluid proteins. Transfer and detection of male accessory gland-derived mRNA in females at 0hpm was confirmed by measurement of eGFP mRNA in females mated to eGFP-expressing males. In addition, 150 transcripts were up-regulated at 6hpm and 24hpm, while 130 transcripts were down-regulated at 6hpm and 24hpm. Gene Ontology (GO) enrichment analysis revealed that proteases, a protein class broadly known to play important roles in reproduction, were among the most enriched protein classes. RNAs associated with immune system and antimicrobial function were also up-regulated at 24hpm. Collectively, our results suggest that copulation initiates broad transcriptome changes across the mosquito female reproductive tract, “priming” her for important subsequent processes of blood feeding, egg development and immune defense. Our transcriptome analysis provides a vital foundation for future studies of the consequences of mating on female biology and will aid studies seeking to identify specific gene families, molecules and pathways that support key reproductive processes in the female mosquito.

          Author Summary

          Female post-mating behavior has important consequences for mosquito populations and their ability to transmit diseases. Male Aedes aegypti seminal fluid substances transferred during mating cause many important changes to female behavior and physiology, including blood feeding behavior, egg development, and oviposition. In an effort to understand how males induce these responses in Ae. aegypti females, we characterized the transcriptome changes that occur in the female reproductive tract at different time points after mating. We found several RNAs that are apparently transferred by the male, and 280 genes whose mRNA abundance in the female is affected by mating. The nature of the predicted products of many of these genes suggests roles in priming the reproductive tract for egg development, protecting the female against bacterial infections or processing the blood meal. This identification of mating-responsive genes provides information potentially useful for developing tools aimed at preventing disease transmission by manipulating female mosquitoes’ post-mating responses.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          The rapid evolution of reproductive proteins.

          Many genes that mediate sexual reproduction, such as those involved in gamete recognition, diverge rapidly, often as a result of adaptive evolution. This widespread phenomenon might have important consequences, such as the establishment of barriers to fertilization that might lead to speciation. Sequence comparisons and functional studies are beginning to show the extent to which the rapid divergence of reproductive proteins is involved in the speciation process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The global emergence/resurgence of arboviral diseases as public health problems.

            During the past 20 years there has been a dramatic resurgence or emergence of epidemic arboviral diseases affecting both humans and domestic animals. These epidemics have been caused primarily by viruses thought to be under control such as dengue, Japanese encephalitis, yellow fever, and Venezuelan equine encephalitis, or viruses that have expanded their geographic distribution such as West Nile and Rift Valley fever. Several of these viruses are presented as case studies to illustrate the changing epidemiology. The factors responsible for the dramatic resurgence of arboviral diseases in the waning years of the 20th century are discussed, as is the need for rebuilding the public health infrastructure to deal with epidemic vector-borne diseases in the 21st century.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense.

              Here, we show that the major mosquito vector for dengue virus uses the JAK-STAT pathway to control virus infection. Dengue virus infection in Aedes aegypti mosquitoes activates the JAK-STAT immune signaling pathway. The mosquito's susceptibility to dengue virus infection increases when the JAK-STAT pathway is suppressed through RNAi depletion of its receptor Domeless (Dome) and the Janus kinase (Hop), whereas mosquitoes become more resistant to the virus when the negative regulator of the JAK-STAT pathway, PIAS, is silenced. The JAK-STAT pathway exerts its anti-dengue activity presumably through one or several STAT-regulated effectors. We have identified, and partially characterized, two JAK-STAT pathway-regulated and infection-responsive dengue virus restriction factors (DVRFs) that contain putative STAT-binding sites in their promoter regions. Our data suggest that the JAK-STAT pathway is part of the A. aegypti mosquito's anti-dengue defense and may act independently of the Toll pathway and the RNAi-mediated antiviral defenses.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                February 2016
                22 February 2016
                : 10
                : 2
                : e0004451
                Affiliations
                [1 ]Department of Entomology, Cornell University, Ithaca, New York, United States of America
                [2 ]Instituto Colombiano de Medicina Tropical - Universidad CES, Medellín, Colombia
                [3 ]Department of Biology, University of Rochester, Rochester, New York, United States of America
                [4 ]Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
                University of Perugia, ITALY
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CAP ECD LCH MFW. Performed the experiments: CAP ECD FWA. Analyzed the data: YHAB JAP CAP ECD. Wrote the paper: CAP ECD YHAB FWA LCH SMV MFW.

                Article
                PNTD-D-15-01854
                10.1371/journal.pntd.0004451
                4764262
                26901677
                1a80c174-8566-466c-a425-79958bc0e8a7
                © 2016 Alfonso-Parra et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 November 2015
                : 21 January 2016
                Page count
                Figures: 5, Tables: 1, Pages: 24
                Funding
                This study was supported by the National Institutes of Health Grant http://www.nih.gov/ R01AI095491 (to LCH and MFW) and National Institute of Food and Agriculture ( http://nifa.usda.gov/) Hatch grant NYC-139-487 (to LCH and MFW) and National Institutes of Health Grant GM098634 (to JAP). For part of this work, ECD was supported by a Cornell Presidential Life Sciences Fellowship and YHAB by National Institutes of Health Grant GM051932 and funds from the University of Rochester (to Dr. H. Allen Orr).
                Categories
                Research Article
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Transcriptome Analysis
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Transcriptome Analysis
                Biology and Life Sciences
                Genetics
                Gene Expression
                Biology and Life Sciences
                Immunology
                Immune Response
                Medicine and Health Sciences
                Immunology
                Immune Response
                Research and Analysis Methods
                Model Organisms
                Animal Models
                Drosophila Melanogaster
                Biology and Life Sciences
                Organisms
                Animals
                Invertebrates
                Arthropoda
                Insects
                Drosophila
                Drosophila Melanogaster
                Medicine and Health Sciences
                Epidemiology
                Disease Vectors
                Insect Vectors
                Mosquitoes
                Biology and Life Sciences
                Organisms
                Animals
                Invertebrates
                Arthropoda
                Insects
                Mosquitoes
                Biology and Life Sciences
                Anatomy
                Body Fluids
                Blood
                Medicine and Health Sciences
                Anatomy
                Body Fluids
                Blood
                Biology and Life Sciences
                Physiology
                Body Fluids
                Blood
                Medicine and Health Sciences
                Physiology
                Body Fluids
                Blood
                Medicine and Health Sciences
                Hematology
                Blood
                Research and analysis methods
                Extraction techniques
                RNA extraction
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Gene Ontologies
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Gene Ontologies
                Custom metadata
                Data are available on the Sequence Read Archive under accession number SRP068996.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article