22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of macrophage migration inhibitory factor in ocular surface disease pathogenesis after chemical burn in the murine eye

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To evaluate the role of macrophage migration inhibitory factor (MIF) in the wound healing process following severe chemical burns to the ocular surface.

          Methods

          Chemical burning of the ocular surface was induced in mice (C57BL/6) via the application of 0.1 M NaOH. Macrophage migration inhibitory factor ( MIF), tumor necrosis factor-α ( TNF-α), and interleukin-1β ( IL-1β) mRNA expression in the ocular surface and lacrimal gland was evaluated via real-time reverse transcription PCR on days 2, 7, and 30 after induction of the chemical burn. The expression of MIF protein in the ocular surface and lacrimal gland was evaluated via western blot analysis. Immunohistochemical staining was conducted to detect MIF and vasculoendothelial growth factor in the cornea during the wound healing process. The angiogenic role of MIF was further evaluated using an 8–0 polyglactin suture technique to induce corneal neovascularization.

          Results

          MIF, TNF-α, and IL-1β mRNA expression were elevated significantly in the ocular surface up to day 30 after chemical burn induction. TNF-α alone was elevated in the lacrimal gland. MIF protein elevation was confirmed via western blot analysis, and the spatial similarity of MIF and VEGF expression in the cornea was noted during the wound healing process. 8–0 polyglactin sutures soaked in MIF induced significantly higher numbers of new vessels on the mouse cornea after 7 days (p=0.003, Mann–Whitney test).

          Conclusions

          These findings indicate that MIF performs a crucial role in wound healing on the ocular surface after the induction of chemical burns.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage migration inhibitory factor: a regulator of innate immunity

          Key Points Cytokines are essential effector molecules of innate immunity that initiate and coordinate the cellular and humoral responses aimed, for example, at the eradication of microbial pathogens. Discovered in the late 1960s as a product of activated T cells, the cytokine macrophage migration inhibitory factor (MIF) has been discovered recently to carry out important functions as a mediator of the innate immune system. Constitutively expressed by a broad spectrum of cells and tissues, including monocytes and macrophages, MIF is rapidly released after exposure to microbial products and pro-inflammatory mediators, and in response to stress. After it is released, MIF induces pro-inflammatory biological responses that act as a regulator of immune responses. MIF activates the extracellular signal-regulated kinase 1 (ERK1)/ERK2–mitogen-activated protein kinase pathway, inhibits the activity of JUN activation domain-binding protein 1 (JAB1) — a co-activator of the activator protein 1 (AP1) — upregulates the expression of Toll-like receptor 4 to promote the recognition of endotoxin-expressing bacterial pathogens, sustains pro-inflammatory function by inhibiting p53-dependent apoptosis of macrophages and counter-regulates the immunosuppressive effects of glucocorticoids on immune cells. As a pro-inflammatory mediator, MIF has been shown to be implicated in the pathogenesis of severe sepsis and septic shock, acute respiratory distress syndrome, and several other inflammatory and autoimmune diseases, including rheumatoid arthritis, glomerulonephritis and inflammatory bowel diseases. Given its crucial role as a regulator of innate and acquired immunity, pharmacological or immunological modulation of MIF activity might offer new treatment opportunities for the management of acute and chronic inflammatory diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells.

            Constitutive expression of the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) is characteristic of malignant ovarian surface epithelium. We investigated the hypothesis that this autocrine action of TNF-alpha generates and sustains a network of other mediators that promote peritoneal cancer growth and spread. When compared with two ovarian cancer cell lines that did not make TNF-alpha, constitutive production of TNF-alpha was associated with greater release of the chemokines CCL2 and CXCL12, the cytokines interleukin-6 (IL-6) and macrophage migration-inhibitory factor (MIF), and the angiogenic factor vascular endothelial growth factor (VEGF). TNF-alpha production was associated also with increased peritoneal dissemination when the ovarian cancer cells were xenografted. We next used RNA interference to generate stable knockdown of TNF-alpha in ovarian cancer cells. Production of CCL2, CXCL12, VEGF, IL-6, and MIF was decreased significantly in these cells compared with wild-type or mock-transfected cells, but in vitro growth rates were unaltered. Tumor growth and dissemination in vivo were significantly reduced when stable knockdown of TNF-alpha was achieved. Tumors derived from TNF-alpha knockdown cells were noninvasive and well circumscribed and showed high levels of apoptosis, even in the smallest deposits. This was reflected in reduced vascularization of TNF-alpha knockdown tumors. Furthermore, culture supernatants from such cells failed to stimulate endothelial cell growth in vitro. We conclude that autocrine production of TNF-alpha by ovarian cancer cells stimulates a constitutive network of other cytokines, angiogenic factors, and chemokines that may act in an autocrine/paracrine manner to promote colonization of the peritoneum and neovascularization of developing tumor deposits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemokines in atherosclerosis: an update.

              The fundamental importance of chemokines for atherogenesis, progression, and destabilization of atherosclerotic plaques is now widely appreciated, but the degree of complexity, specificity, and cooperativity harnessed by these signal molecules to govern atherogenic cell recruitment and homeostasis is still being refined. Since the role of chemokines in atherosclerotic vascular disease has been reviewed in this journal, significant progress has been accomplished in defining the regulation of chemokine expression and function in atherosclerosis. In this update, we will highlight these recent developments, in particular the identification of components regulating the transcriptional machinery of the proatherogenic chemokine CCL5, distinct roles of its receptors CCR1 and CCR5 in plaque formation and immunobalance, and differential site- and stage-specific effects of T cell-activating chemokines and their receptors, eg, CXCL10 and CXCR3. The contribution of the transmembrane chemokines CX(3)CL1 and CXCL16 with their respective receptors CX(3)CR1 and CXCR6 in the recruitment of T cell and monocyte subsets and shear-mediated plaque modulation will be discussed. Finally, the role of CXCR2 and CXCR4, their respective ligands CXCL1 and CXCL12, and the noncanonical dual agonist MIF in atheroprogression will be dissected. The considerable leap in insight over recent years leads us to anticipate further advances in comprehending the role of chemokines in atherosclerosis, allowing targeted interventions for its prevention and therapy.
                Bookmark

                Author and article information

                Journal
                Mol Vis
                MV
                Molecular Vision
                Molecular Vision
                1090-0535
                2010
                17 November 2010
                : 16
                : 2402-2411
                Affiliations
                [1 ]Department of Ophthalmology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
                [2 ]Department of Pathology, Dongguk University Seoul, Graduate School of Medicine, Seoul, South Korea
                [3 ]Department of Ophthalmology and Visual Sciences, Montefiore Medical Center and Albert Einstein College of Medicine, New York, NY
                [4 ]Department of Ophthalmology, Dongguk University Seoul, Graduate School of Medicine, Seoul, South Korea
                Author notes
                Correspondence to: Choul Yong Park M.D., Department of Ophthalmology, Dongguk University Ilsan Hospital, Dongguk University, Graduate School, Seoul 814, Siksadong, Ilsan-dong-gu, Koyang, Kyunggido, South Korea, 410-773; Phone: 82-31-961-7395; FAX: 82-31-961-7977; email: choulyong@ 123456yahoo.co.kr
                Article
                258 2010MOLVIS0427
                2994759
                21152395
                1ade2f0b-a670-45b8-a166-1931c09baa9c
                Copyright © 2010 Molecular Vision.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 04 October 2010
                : 11 November 2010
                Categories
                Research Article
                Custom metadata
                Export to XML
                Park

                Vision sciences
                Vision sciences

                Comments

                Comment on this article