29
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Microvascular Effects of Heart Rate Control With Esmolol in Patients With Septic Shock : A Pilot Study*

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          β-blocker therapy may control heart rate and attenuate the deleterious effects of β-stimulating catecholamines in septic shock. However, their negative chronotropy and inotropy may potentially lead to an inappropriately low cardiac output, with a subsequent compromise of microvascular blood flow. The purpose of the present pilot study was to investigate the effects of reducing heart rate to less than 95 beats per minute in patients with septic shock using the β-1 adrenoceptor blocker, esmolol, with specific focus on systemic hemodynamics and the microcirculation. Prospective, observational clinical study. Multidisciplinary ICU at a university hospital. After 24 hours of initial hemodynamic optimization, 25 septic shock patients with a heart rate greater than or equal to 95 beats per minute and requiring norepinephrine to maintain mean arterial pressure greater than or equal to 65 mm Hg received a titrated esmolol infusion to maintain heart rate less than 95 beats per minute. Sublingual microcirculatory blood flow was assessed by sidestream dark-field imaging. All measurements, including data from right heart catheterization and norepinephrine requirements, were obtained at baseline and 24 hours after esmolol administration. Heart rates targeted between 80 and 94 beats per minute were achieved in all patients. Whereas cardiac index decreased (4.0 [3.5; 5.3] vs 3.1 [2.6; 3.9] L/min/m; p<0.001), stroke volume remained unchanged (34 [37; 47] vs 40 [31; 46] mL/beat/m; p=0.32). Microcirculatory blood flow in small vessels increased (2.8 [2.6; 3.0] vs 3.0 [3.0; 3.0]; p=0.002), while the heterogeneity index decreased (median 0.06 [interquartile range 0; 0.21] vs 0 [0; 0]; p=0.002). PaO2 and pH increased while PaCO2 decreased (all p<0.05). Of note, norepinephrine requirements were significantly reduced by selective β-1 blocker therapy (0.53 [0.29; 0.96] vs 0.41 [0.22; 0.79] µg/kg/min; p=0.03). This pilot study demonstrated that heart rate control by a titrated esmolol infusion in septic shock patients was associated with maintenance of stroke volume, preserved microvascular blood flow, and a reduction in norepinephrine requirements.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of sepsis-induced cardiac dysfunction.

          To review mechanisms underlying sepsis-induced cardiac dysfunction in general and intrinsic myocardial depression in particular. MEDLINE database. Myocardial depression is a well-recognized manifestation of organ dysfunction in sepsis. Due to the lack of a generally accepted definition and the absence of large epidemiologic studies, its frequency is uncertain. Echocardiographic studies suggest that 40% to 50% of patients with prolonged septic shock develop myocardial depression, as defined by a reduced ejection fraction. Sepsis-related changes in circulating volume and vessel tone inevitably affect cardiac performance. Although the coronary circulation during sepsis is maintained or even increased, alterations in the microcirculation are likely. Mitochondrial dysfunction, another feature of sepsis-induced organ dysfunction, will also place the cardiomyocytes at risk of adenosine triphosphate depletion. However, clinical studies have demonstrated that myocardial cell death is rare and that cardiac function is fully reversible in survivors. Hence, functional rather than structural changes seem to be responsible for intrinsic myocardial depression during sepsis. The underlying mechanisms include down-regulation of beta-adrenergic receptors, depressed postreceptor signaling pathways, impaired calcium liberation from the sarcoplasmic reticulum, and impaired electromechanical coupling at the myofibrillar level. Most, if not all, of these changes are regulated by cytokines and nitric oxide. Integrative studies are needed to distinguish the hierarchy of the various mechanisms underlying septic cardiac dysfunction. As many of these changes are related to severe inflammation and not to infection per se, a better understanding of septic myocardial dysfunction may be usefully extended to other systemic inflammatory conditions encountered in the critically ill. Myocardial depression may be arguably viewed as an adaptive event by reducing energy expenditure in a situation when energy generation is limited, thereby preventing activation of cell death pathways and allowing the potential for full functional recovery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008.

            To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," published in 2004. Modified Delphi method with a consensus conference of 55 international experts, several subsequent meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. This process was conducted independently of any industry funding. We used the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations. A strong recommendation (1) indicates that an intervention's desirable effects clearly outweigh its undesirable effects (risk, burden, cost) or clearly do not. Weak recommendations (2) indicate that the tradeoff between desirable and undesirable effects is less clear. The grade of strong or weak is considered of greater clinical importance than a difference in letter level of quality of evidence. In areas without complete agreement, a formal process of resolution was developed and applied. Recommendations are grouped into those directly targeting severe sepsis, recommendations targeting general care of the critically ill patient that are considered high priority in severe sepsis, and pediatric considerations. Key recommendations, listed by category, include early goal-directed resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm potential source of infection (1C); administration of broad-spectrum antibiotic therapy within 1 hr of diagnosis of septic shock (1B) and severe sepsis without septic shock (1D); reassessment of antibiotic therapy with microbiology and clinical data to narrow coverage, when appropriate (1C); a usual 7-10 days of antibiotic therapy guided by clinical response (1D); source control with attention to the balance of risks and benefits of the chosen method (1C); administration of either crystalloid or colloid fluid resuscitation (1B); fluid challenge to restore mean circulating filling pressure (1C); reduction in rate of fluid administration with rising filing pressures and no improvement in tissue perfusion (1D); vasopressor preference for norepinephrine or dopamine to maintain an initial target of mean arterial pressure > or = 65 mm Hg (1C); dobutamine inotropic therapy when cardiac output remains low despite fluid resuscitation and combined inotropic/vasopressor therapy (1C); stress-dose steroid therapy given only in septic shock after blood pressure is identified to be poorly responsive to fluid and vasopressor therapy (2C); recombinant activated protein C in patients with severe sepsis and clinical assessment of high risk for death (2B except 2C for postoperative patients). In the absence of tissue hypoperfusion, coronary artery disease, or acute hemorrhage, target a hemoglobin of 7-9 g/dL (1B); a low tidal volume (1B) and limitation of inspiratory plateau pressure strategy (1C) for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure in acute lung injury (1C); head of bed elevation in mechanically ventilated patients unless contraindicated (1B); avoiding routine use of pulmonary artery catheters in ALI/ARDS (1A); to decrease days of mechanical ventilation and ICU length of stay, a conservative fluid strategy for patients with established ALI/ARDS who are not in shock (1C); protocols for weaning and sedation/analgesia (1B); using either intermittent bolus sedation or continuous infusion sedation with daily interruptions or lightening (1B); avoidance of neuromuscular blockers, if at all possible (1B); institution of glycemic control (1B), targeting a blood glucose < 150 mg/dL after initial stabilization (2C); equivalency of continuous veno-veno hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1A); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding using H2 blockers (1A) or proton pump inhibitors (1B); and consideration of limitation of support where appropriate (1D). Recommendations specific to pediatric severe sepsis include greater use of physical examination therapeutic end points (2C); dopamine as the first drug of choice for hypotension (2C); steroids only in children with suspected or proven adrenal insufficiency (2C); and a recommendation against the use of recombinant activated protein C in children (1B). There was strong agreement among a large cohort of international experts regarding many level 1 recommendations for the best current care of patients with severe sepsis. Evidenced-based recommendations regarding the acute management of sepsis and septic shock are the first step toward improved outcomes for this important group of critically ill patients.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Pathogenetic mechanisms of septic shock.

                Bookmark

                Author and article information

                Journal
                Critical Care Medicine
                Critical Care Medicine
                Ovid Technologies (Wolters Kluwer Health)
                0090-3493
                2013
                September 2013
                : 41
                : 9
                : 2162-2168
                Article
                10.1097/CCM.0b013e31828a678d
                23873274
                1b0b566e-4bfc-4d62-8511-39425666e56c
                © 2013
                History

                Comments

                Comment on this article