31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nasal Screening for MRSA: Different Swabs – Different Results!

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          Swab-based nasal screening is commonly used to identify asymptomatic carriage of Staphylococcus aureus in patients. Bacterial detection depends on the uptake and release capacities of the swabs and on the swabbing technique itself. This study investigates the performance of different swab-types in nasal MRSA-screening by utilizing a unique artificial nose model to provide realistic and standardized screening conditions.

          Methods

          An anatomically correct artificial nose model was inoculated with a numerically defined mixture of MRSA and Staphylococcus epidermidis bacteria at quantities of 4×10 2 and 8×10 2 colony forming units (CFU), respectively. Five swab-types were tested following a strict protocol. Bacterial recovery was measured for direct plating and after elution into Amies medium by standard viable count techniques.

          Results

          Mean recovered bacteria quantities varied between 209 and 0 CFU for MRSA, and 365 and 0 CFU for S. epidermidis, resulting swab-type-dependent MRSA-screening-sensitivities ranged between 0 and 100%. Swabs with nylon flocked tips or cellular foam tips performed significantly better compared to conventional rayon swabs referring to the recovered bacterial yield (p<0.001). Best results were obtained by using a flocked swab in combination with Amies preservation medium. Within the range of the utilized bacterial concentrations, recovery ratios for the particular swab-types were independent of the bacterial species.

          Conclusions

          This study combines a realistic model of a human nose with standardized laboratory conditions to analyze swab-performance in MRSA-screening situations. Therefore, influences by inter-individual anatomical differences as well as diverse colonization densities in patients could be excluded. Recovery rates vary significantly between different swab-types. The choice of the swab has a great impact on the laboratory result. In fact, the swab-type contributes significantly to true positive or false negative detection of nasal MRSA carriage. These findings should be considered when screening a patient.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Invasive methicillin-resistant Staphylococcus aureus infections in the United States.

          As the epidemiology of infections with methicillin-resistant Staphylococcus aureus (MRSA) changes, accurate information on the scope and magnitude of MRSA infections in the US population is needed. To describe the incidence and distribution of invasive MRSA disease in 9 US communities and to estimate the burden of invasive MRSA infections in the United States in 2005. Active, population-based surveillance for invasive MRSA in 9 sites participating in the Active Bacterial Core surveillance (ABCs)/Emerging Infections Program Network from July 2004 through December 2005. Reports of MRSA were investigated and classified as either health care-associated (either hospital-onset or community-onset) or community-associated (patients without established health care risk factors for MRSA). Incidence rates and estimated number of invasive MRSA infections and in-hospital deaths among patients with MRSA in the United States in 2005; interval estimates of incidence excluding 1 site that appeared to be an outlier with the highest incidence; molecular characterization of infecting strains. There were 8987 observed cases of invasive MRSA reported during the surveillance period. Most MRSA infections were health care-associated: 5250 (58.4%) were community-onset infections, 2389 (26.6%) were hospital-onset infections; 1234 (13.7%) were community-associated infections, and 114 (1.3%) could not be classified. In 2005, the standardized incidence rate of invasive MRSA was 31.8 per 100,000 (interval estimate, 24.4-35.2). Incidence rates were highest among persons 65 years and older (127.7 per 100,000; interval estimate, 92.6-156.9), blacks (66.5 per 100,000; interval estimate, 43.5-63.1), and males (37.5 per 100,000; interval estimate, 26.8-39.5). There were 1598 in-hospital deaths among patients with MRSA infection during the surveillance period. In 2005, the standardized mortality rate was 6.3 per 100,000 (interval estimate, 3.3-7.5). Molecular testing identified strains historically associated with community-associated disease outbreaks recovered from cultures in both hospital-onset and community-onset health care-associated infections in all surveillance areas. Invasive MRSA infection affects certain populations disproportionately. It is a major public health problem primarily related to health care but no longer confined to intensive care units, acute care hospitals, or any health care institution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Skin microbiota: a source of disease or defence?

            Microbes found on the skin are usually regarded as pathogens, potential pathogens or innocuous symbiotic organisms. Advances in microbiology and immunology are revising our understanding of the molecular mechanisms of microbial virulence and the specific events involved in the host-microbe interaction. Current data contradict some historical classifications of cutaneous microbiota and suggest that these organisms may protect the host, defining them not as simple symbiotic microbes but rather as mutualistic. This review will summarize current information on bacterial skin flora including Staphylococcus, Corynebacterium, Propionibacterium, Streptococcus and Pseudomonas. Specifically, the review will discuss our current understanding of the cutaneous microbiota as well as shifting paradigms in the interpretation of the roles microbes play in skin health and disease.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The skin microbiome

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                29 October 2014
                : 9
                : 10
                : e111627
                Affiliations
                [1 ]Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Hospital, Rostock, Germany
                [2 ]Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital Hamburg, Hamburg, Germany
                [3 ]Department of Prosthodontics and Material Sciences, Rostock University Hospital, Rostock, Germany
                Universitätsklinikum Hamburg-Eppendorf, Germany
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: PW AP. Performed the experiments: PW. Analyzed the data: PW HF PO AP. Contributed reagents/materials/analysis tools: PW HF PO AP. Wrote the paper: PW HF PO AP.

                Article
                PONE-D-14-28339
                10.1371/journal.pone.0111627
                4213029
                25353631
                1b345ea5-7996-4247-a24d-c5a40deb90a0
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 June 2014
                : 5 October 2014
                Page count
                Pages: 8
                Funding
                The authors received no specific funding for this work.
                Categories
                Research Article
                Biology and Life Sciences
                Biotechnology
                Medical Devices and Equipment
                Computational Biology
                Population Modeling
                Infectious Disease Modeling
                Medicine and Health Sciences
                Infectious Diseases
                Bacterial Diseases
                Staphylococcal Infection
                Healthcare-Associated Infections
                Nosocomial Infections
                Infectious Disease Control
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article