9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracellular vesicles: biomarkers and regulators of vascular function during extracorporeal circulation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extracellular vesicles (EVs) are generated at increased rates from parenchymal and circulating blood cells during exposure of the circulation to abnormal flow conditions and foreign materials associated with extracorporeal circuits (ExCors). This review describes types of EVs produced in different ExCors and extracorporeal life support (ECLS) systems including cardiopulmonary bypass circuits, extracorporeal membrane oxygenation (ECMO), extracorporeal carbon dioxide removal (ECCO 2R), apheresis, dialysis and ventricular assist devices. Roles of EVs not only as biomarkers of adverse events during ExCor/ECLS use, but also as mediators of vascular dysfunction are explored. Manipulation of the number or subtypes of circulating EVs may prove a means of improving vascular function for individuals requiring ExCor/ECLS support. Strategies for therapeutic manipulation of EVs during ExCor/ECLS use are discussed such as accelerating their clearance, preventing their genesis or pharmacologic options to reduce or select which and how many EVs circulate. Strategies to reduce or select for specific types of EVs may prove beneficial in preventing or treating other EV-related diseases such as cancer.

          Related collections

          Most cited references117

          • Record: found
          • Abstract: found
          • Article: not found

          Microparticles in hemostasis and thrombosis.

          Blood contains microparticles (MPs) derived from a variety of cell types, including platelets, monocytes, and endothelial cells. In addition, tumors release MPs into the circulation. MPs are formed from membrane blebs that are released from the cell surface by proteolytic cleavage of the cytoskeleton. All MPs are procoagulant because they provide a membrane surface for the assembly of components of the coagulation protease cascade. Importantly, procoagulant activity is increased by the presence of anionic phospholipids, particularly phosphatidylserine (PS), and the procoagulant protein tissue factor (TF), which is the major cellular activator of the clotting cascade. High levels of platelet-derived PS(+) MPs are present in healthy individuals, whereas the number of TF(+), PS(+) MPs is undetectable or very low. However, levels of PS(+), TF(+) MPs are readily detected in a variety of diseases, and monocytes appear to be the primary cellular source. In cancer, PS(+), TF(+) MPs are derived from tumors and may serve as a useful biomarker to identify patients at risk for venous thrombosis. This review will summarize our current knowledge of the role of procoagulant MPs in hemostasis and thrombosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Exosome removal as a therapeutic adjuvant in cancer

            Exosome secretion is a notable feature of malignancy owing to the roles of these nanoparticles in cancer growth, immune suppression, tumor angiogenesis and therapeutic resistance. Exosomes are 30–100 nm membrane vesicles released by many cells types during normal physiological processes. Tumors aberrantly secrete large quantities of exosomes that transport oncoproteins and immune suppressive molecules to support tumor growth and metastasis. The role of exosomes in intercellular signaling is exemplified by human epidermal growth factor receptor type 2 (HER2) over-expressing breast cancer, where exosomes with the HER2 oncoprotein stimulate tumor growth and interfere with the activity of the therapeutic antibody Herceptin®. Since numerous observations from experimental model systems point toward an important clinical impact of exosomes in cancer, several pharmacological strategies have been proposed for targeting their malignant activities. We also propose a novel device strategy involving extracorporeal hemofiltration of exosomes from the entire circulatory system using an affinity plasmapheresis platform known as the Aethlon ADAPT™ (adaptive dialysis-like affinity platform technology) system, which would overcome the risks of toxicity and drug interactions posed by pharmacological approaches. This technology allows affinity agents, including exosome-binding lectins and antibodies, to be immobilized in the outer-capillary space of plasma filtration membranes that integrate into existing kidney dialysis systems. Device therapies that evolve from this platform allow rapid extracorporeal capture and selective retention of target particles < 200 nm from the entire circulatory system. This strategy is supported by clinical experience in hepatitis C virus-infected patients using an ADAPT™ device, the Hemopurifier®, to reduce the systemic load of virions having similar sizes and glycosylated surfaces as cancer exosomes. This review discusses the possible therapeutic approaches for targeting immune suppressive exosomes in cancer patients, and the anticipated significance of these strategies for reversing immune dysfunction and improving responses to standard of care treatments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins.

              The heat shock proteins (HSPs) are a family of intracellular proteins found in all eukaryotes and prokaryotes. Their functions are well characterized and are central to maintaining cellular homeostasis and in promoting cell survival in response to stressful cellular conditions. However, several studies provide evidence that specific members of the HSP family might be secreted via an unidentified exocytotic pathway. Here we show that exosomes, small membrane vesicles that are secreted by numerous cell types, contribute to the release of HSP70 from human peripheral blood mononuclear cells (PBMCs) in both basal and stress-induced (heat shock at 40 or 43 degrees C for 1 h) states. HSP70 release from PBMCs is independent of the common secretory pathway because Brefeldin A, an inhibitor of the classical protein transport pathway, did not block HSP70 release. Furthermore, we show that HSP70 release from PBMCs does not occur via a lipid raft-dependent pathway, because treatment with methyl-beta-cyclodextrin, a raft-disrupting drug, had no affect on HSP70 release. To examine whether exosomes contributed to HSP70 release from PBMCs, exosomes were purified from PBMC cultures, and exosomal number and HSP70 content were determined. We demonstrate that although heat shock does not influence the exosomal secretory rate, the HSP70 content of exosomes isolated from heat shocked PBMCs is significantly higher than control. These data identify a novel secretory pathway by which HSP70 can be actively released from cells in both the basal and stress-induced state.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                14 December 2018
                14 December 2018
                : 9
                : 98
                : 37229-37251
                Affiliations
                1 Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
                2 Department of Physiology, University of Toronto, Toronto, ON, Canada
                3 Department of Anesthesia, University of Toronto, Toronto, ON, Canada
                4 Department of Anesthesia and Pain Medicine, SickKids, Toronto, ON, Canada
                5 Department of Surgery, University of Toronto, Toronto, ON, Canada
                6 Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
                7 German Heart Institute, Berlin, Germany
                Author notes
                Correspondence to: Wolfgang M. Kuebler, wolfgang.kuebler@ 123456charite.de
                Article
                26433
                10.18632/oncotarget.26433
                6324688
                1b85e2d8-221c-4e20-80bd-98c3d24a32cd
                Copyright: © 2018 McVey and Kuebler

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 26 May 2018
                : 26 November 2018
                Categories
                Review

                Oncology & Radiotherapy
                extracellular vesicles,extracorporeal circuits,ecmo,cardiopulmonary bypass,hemodialysis

                Comments

                Comment on this article