39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel Antibodies Reveal Inclusions Containing Non-Native SOD1 in Sporadic ALS Patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mutations in CuZn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) and are found in 6% of ALS patients. Non-native and aggregation-prone forms of mutant SOD1s are thought to trigger the disease. Two sets of novel antibodies, raised in rabbits and chicken, against peptides spaced along the human SOD1 sequence, were by enzyme-linked immunosorbent assay and an immunocapture method shown to be specific for denatured SOD1. These were used to examine SOD1 in spinal cords of ALS patients lacking mutations in the enzyme. Small granular SOD1-immunoreactive inclusions were found in spinal motoneurons of all 37 sporadic and familial ALS patients studied, but only sparsely in 3 of 28 neurodegenerative and 2 of 19 non-neurological control patients. The granular inclusions were by confocal microscopy found to partly colocalize with markers for lysosomes but not with inclusions containing TAR DNA binding protein-43, ubiquitin or markers for endoplasmic reticulum, autophagosomes or mitochondria. Granular inclusions were also found in carriers of SOD1 mutations and in spinobulbar muscular atrophy (SBMA) patients and they were the major type of inclusion detected in ALS patients homozygous for the wild type-like D90A mutation. The findings suggest that SOD1 may be involved in ALS pathogenesis in patients lacking mutations in the enzyme.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation.

          Mutations of human Cu,Zn superoxide dismutase (SOD) are found in about 20 percent of patients with familial amyotrophic lateral sclerosis (ALS). Expression of high levels of human SOD containing a substitution of glycine to alanine at position 93--a change that has little effect on enzyme activity--caused motor neuron disease in transgenic mice. The mice became paralyzed in one or more limbs as a result of motor neuron loss from the spinal cord and died by 5 to 6 months of age. The results show that dominant, gain-of-function mutations in SOD contribute to the pathogenesis of familial ALS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unraveling the mechanisms involved in motor neuron degeneration in ALS.

            Although Charcot described amyotrophic lateral sclerosis (ALS) more than 130 years ago, the mechanism underlying the characteristic selective degeneration and death of motor neurons in this common adult motor neuron disease has remained a mystery. There is no effective remedy for this progressive, fatal disorder. Modern genetics has now identified mutations in one gene [Cu/Zn superoxide dismutase (SOD1)] as a primary cause and implicated others [encoding neurofilaments, cytoplasmic dynein and its processivity factor dynactin, and vascular endothelial growth factor (VEGF)] as contributors to, or causes of, motor neuron diseases. These insights have enabled development of model systems to test hypotheses of disease mechanism and potential therapies. Along with errors in the handling of synaptic glutamate and the potential excitotoxic response this provokes, these model systems highlight the involvement of nonneuronal cells in disease progression and provide new therapeutic strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1.

              Analysis of transgenic mice expressing familial amyotrophic lateral sclerosis (ALS)-linked mutations in the enzyme superoxide dismutase (SOD1) have shown that motor neuron death arises from a mutant-mediated toxic property or properties. In testing the disease mechanism, both elimination and elevation of wild-type SOD1 were found to have no effect on mutant-mediated disease, which demonstrates that the use of SOD mimetics is unlikely to be an effective therapy and raises the question of whether toxicity arises from superoxide-mediated oxidative stress. Aggregates containing SOD1 were common to disease caused by different mutants, implying that coaggregation of an unidentified essential component or components or aberrant catalysis by misfolded mutants underlies a portion of mutant-mediated toxicity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                14 July 2010
                : 5
                : 7
                : e11552
                Affiliations
                [1 ]Department of Medical Biosciences, Umeå University, Umeå, Sweden
                [2 ]Department of Pathology, Umeå University, Umeå, Sweden
                [3 ]Department of Clinical Chemistry, Umeå University, Umeå, Sweden
                [4 ]Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
                [5 ]Department of Molecular Biology, Umeå University, Umeå, Sweden
                Uppsala University, Sweden
                Author notes

                Conceived and designed the experiments: PMA SLM TB. Performed the experiments: KF PAJ DB RR SLM TB. Analyzed the data: KF PAJ PMA SLM TB. Wrote the paper: KF PAJ PMA SLM TB. Collected the research material: KF PAJ PMA KSG MH JJ TB.

                Article
                09-PONE-RA-14397R1
                10.1371/journal.pone.0011552
                2904380
                20644736
                1bac92ff-f208-40cd-bd82-11b2dc02408b
                Forsberg et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 November 2009
                : 3 June 2010
                Page count
                Pages: 9
                Categories
                Research Article
                Neurological Disorders
                Neuroscience
                Neuroscience/Neurobiology of Disease and Regeneration
                Neurological Disorders/Movement Disorders
                Neurological Disorders/Spinal Disorders

                Uncategorized
                Uncategorized

                Comments

                Comment on this article