4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Challenges of pathogen inactivation in animal manure through anaerobic digestion: a short review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Animal manure is the main source of bioenergy production by anaerobic digestion (AD). However, the pathogenic bacteria in manure may pose a high risk to human health by contaminating the environment if not effectively inactivated during AD. Worldwide, more than 20,000 biogas plants are running for the treatment of animal manure. AD has been playing the important role in establishing a circular economy in the agricultural sector and may contribute to the United Nations sustainable development goal (UN SDG). Nevertheless, whether AD is a reliable approach for pathogens inactivation has been challenged. A comprehensive understanding of the coping mechanisms of pathogens with adverse conditions and the challenges of establishing the AD process to inactivate effectively pathogens are yet to be analyzed. In this review, the diversity and resistance of pathogens in animal manure are summarized. The efficiencies and the difficulties of their inactivations in AD are also analyzed. In particular, three forms of pathogens i.e. sporing-forming pathogens, viable but non-culturable (VBNC) pathogens, and persistent pathogens are discussed. The factors influencing the pathogens’ inactivation and AD efficiencies are analyzed. The trade-off between energy production and pathogens inactivation in an AD system was consequently pointed out. This review concluded that the development of anaerobic processes should meet the goals of high efficient bioenergy production and deep hygienization.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Inhibition of anaerobic digestion process: a review.

          Anaerobic digestion is an attractive waste treatment practice in which both pollution control and energy recovery can be achieved. Many agricultural and industrial wastes are ideal candidates for anaerobic digestion because they contain high levels of easily biodegradable materials. Problems such as low methane yield and process instability are often encountered in anaerobic digestion, preventing this technique from being widely applied. A wide variety of inhibitory substances are the primary cause of anaerobic digester upset or failure since they are present in substantial concentrations in wastes. Considerable research efforts have been made to identify the mechanism and the controlling factors of inhibition. This review provides a detailed summary of the research conducted on the inhibition of anaerobic processes. The inhibitors commonly present in anaerobic digesters include ammonia, sulfide, light metal ions, heavy metals, and organics. Due to the difference in anaerobic inocula, waste composition, and experimental methods and conditions, literature results on inhibition caused by specific toxicants vary widely. Co-digestion with other waste, adaptation of microorganisms to inhibitory substances, and incorporation of methods to remove or counteract toxicants before anaerobic digestion can significantly improve the waste treatment efficiency.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Survival and viability of nonculturableEscherichia coli andVibrio cholerae in the estuarine and marine environment.

            Plating methods for estimating survival of indicator organisms, such asEscherichia coli, and water-borne pathogens includingVibrio cholerae, have severe limitations when used to estimate viable populations of these organisms in the aquatic environment. By combining the methods of immunofluorescent microscopy, acridine orange direct counting, and direct viable counting, with culture methods such as indirect enumeration by most probable number (MPN) estimation and direct plating, it was shown that bothE. coli andV. cholerae undergo a "nonrecoverable" stage of existence, but remain viable. Following 2-week incubations in saltwater (5-25%o NaCl) microcosms, total counts, measured by direct microscopic examination of fluorescent antibody and acridine orange stained cells, remained unchanged, whereas MPN estimates and plate counts exhibited rapid decline. Results of direct viable counting, a procedure permitting estimate of substrate-responsive viable cells by microscopic examination, revealed that a significant proportion of the nonculturable cells were, indeed, viable. Thus, survival of pathogens in the aquatic environment must be re-assessed. The "die-off" or "decay" concept may not be completely valid. Furthermore, the usefulness of the coliform and fecal coliform indices for evaluating water quality for public health purposes may be seriously compromised, in the light of the finding reported here.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Persistent bacterial infections: the interface of the pathogen and the host immune system.

              Persistent bacterial infections involving Mycobacterium tuberculosis, Salmonella enterica serovar Typhi (S. typhi) and Helicobacter pylori pose significant public-health problems. Multidrug-resistant strains of M. tuberculosis and S. typhi are on the increase, and M. tuberculosis and S. typhi infections are often associated with HIV infection. This review discusses the strategies used by these bacteria during persistent infections that allow them to colonize specific sites in the host and evade immune surveillance. The nature of the host immune response to this type of infection and the balance between clearance of the pathogen and avoidance of damage to host tissues are also discussed.
                Bookmark

                Author and article information

                Journal
                Bioengineered
                Bioengineered
                Bioengineered
                Taylor & Francis
                2165-5979
                2165-5987
                4 January 2022
                2022
                4 January 2022
                : 13
                : 1
                : 1149-1161
                Affiliations
                [a ]College of Engineering, China Agricultural University; , Beijing, China
                [b ]Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences; , Beijing, China
                [c ]Department of Civil, Construction & Environmental Engineering, Jomo Kenyatta University of Agriculture & Technology; , Nairobi, Kenya
                Author notes
                CONTACT Wei Qiao qiaowei@ 123456cau.edu.cn ; wayqiao@ 123456sina.cn College of Engineering, China Agricultural University; , Beijing 100083, China
                Author information
                https://orcid.org/0000-0001-5287-9916
                Article
                2017717
                10.1080/21655979.2021.2017717
                8805936
                1bf19105-cedd-434d-ab45-8c4d1ccd94d4
                © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 4, Tables: 3, References: 71, Pages: 13
                Categories
                Review
                Review

                Biomedical engineering
                animal manure,anaerobic digestion,pathogens,inactivation,influencing factors,bioenergy production

                Comments

                Comment on this article