1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Central catheter-associated deep vein thrombosis in cancer: clinical course, prophylaxis, treatment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The adequate handling of central venous catheters is a key element in the management of patients with cancer. Catheter-associated deep vein thrombosis is frequently observed in patients with malignant diseases; however, despite being a common complication among these patients, objective information concerning its epidemiology, clinical course, prophylaxis and treatment strategies is very limited. The reported incidence of catheter-related thrombosis (CRT) is highly variable, depending on symptomatic events, or if patients are screened for asymptomatic thrombosis. Several factors have been identified as potential predisposing factors for CRT, both technical and pathological aspects. The anticoagulant of choice is still unclear; while low-molecular-weight heparin is most commonly used, recent studies assessing the role of direct oral anticoagulants in the treatment of CRT show promise as an alternative, but the evidence remains insufficient and the decision must be made on a case-by-case basis.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Prognosis of cancers associated with venous thromboembolism.

          Little is known about the prognosis of cancer discovered during or after an episode of venous thromboembolism. We linked the Danish National Registry of Patients, the Danish Cancer Registry, and the Danish Mortality Files to obtain data on the survival of patients who received a diagnosis of cancer at the same time as or after an episode of venous thromboembolism. Their survival was compared with that of patients with cancer who did not have venous thromboembolism (control patients), who were matched in terms of type of cancer, age, sex, and year of diagnosis. Of 668 patients who had cancer at the time of an episode of deep venous thromboembolism, 44.0 percent of those with data on the spread of disease (563 patients) had distant metastasis, as compared with 35.1 percent of 5371 control patients with data on spread (prevalence ratio, 1.26; 95 percent confidence interval, 1.13 to 1.40). In the group with cancer at the time of venous thromboembolism, the one-year survival rate was 12 percent, as compared with 36 percent in the control group (P<0.001), and the mortality ratio for the entire follow-up period was 2.20 (95 percent confidence interval, 2.05 to 2.40). Patients in whom cancer was diagnosed within one year after an episode of venous thromboembolism had a slightly increased risk of distant metastasis at the time of the diagnosis (prevalence ratio, 1.23 [95 percent confidence interval, 1.08 to 1.40]) and a relatively low rate of survival at one year (38 percent, vs. 47 percent in the control group; P<0.001). Cancer diagnosed at the same time as or within one year after an episode of venous thromboembolism is associated with an advanced stage of cancer and a poor prognosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development and validation of a predictive model for chemotherapy-associated thrombosis.

            Risk of venous thromboembolism (VTE) is elevated in cancer, but individual risk factors cannot identify a sufficiently high-risk group of outpatients for thromboprophylaxis. We developed a simple model for predicting chemotherapy-associated VTE using baseline clinical and laboratory variables. The association of VTE with multiple variables was characterized in a derivation cohort of 2701 cancer outpatients from a prospective observational study. A risk model was derived and validated in an independent cohort of 1365 patients from the same study. Five predictive variables were identified in a multivariate model: site of cancer (2 points for very high-risk site, 1 point for high-risk site), platelet count of 350 x 10(9)/L or more, hemoglobin less than 100 g/L (10 g/dL) and/or use of erythropoiesis-stimulating agents, leukocyte count more than 11 x 10(9)/L, and body mass index of 35 kg/m(2) or more (1 point each). Rates of VTE in the derivation and validation cohorts, respectively, were 0.8% and 0.3% in low-risk (score = 0), 1.8% and 2% in intermediate-risk (score = 1-2), and 7.1% and 6.7% in high-risk (score >/= 3) category over a median of 2.5 months (C-statistic = 0.7 for both cohorts). This model can identify patients with a nearly 7% short-term risk of symptomatic VTE and may be used to select cancer outpatients for studies of thromboprophylaxis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Risk of venous thromboembolism associated with peripherally inserted central catheters: a systematic review and meta-analysis.

              Peripherally inserted central catheters (PICCs) are associated with an increased risk of venous thromboembolism. However, the size of this risk relative to that associated with other central venous catheters (CVCs) is unknown. We did a systematic review and meta-analysis to compare the risk of venous thromboembolism associated with PICCs versus that associated with other CVCs. We searched several databases, including Medline, Embase, Biosis, Cochrane Central Register of Controlled Trials, Conference Papers Index, and Scopus. Additional studies were identified through hand searches of bibliographies and internet searches, and we contacted study authors to obtain unpublished data. All human studies published in full text, abstract, or poster form were eligible for inclusion. All studies were of adult patients aged at least 18 years who underwent insertion of a PICC. Studies were assessed with the Newcastle-Ottawa risk of bias scale. In studies without a comparison group, the pooled frequency of venous thromboembolism was calculated for patients receiving PICCs. In studies comparing PICCs with other CVCs, summary odds ratios (ORs) were calculated with a random effects meta-analysis. Of the 533 citations identified, 64 studies (12 with a comparison group and 52 without) including 29 503 patients met the eligibility criteria. In the non-comparison studies, the weighted frequency of PICC-related deep vein thrombosis was highest in patients who were critically ill (13·91%, 95% CI 7·68-20·14) and those with cancer (6·67%, 4·69-8·64). Our meta-analysis of 11 studies comparing the risk of deep vein thrombosis related to PICCs with that related to CVCs showed that PICCs were associated with an increased risk of deep vein thrombosis (OR 2·55, 1·54-4·23, p<0·0001) but not pulmonary embolism (no events). With the baseline PICC-related deep vein thrombosis rate of 2·7% and pooled OR of 2·55, the number needed to harm relative to CVCs was 26 (95% CI 13-71). PICCs are associated with a higher risk of deep vein thrombosis than are CVCs, especially in patients who are critically ill or those with a malignancy. The decision to insert PICCs should be guided by weighing of the risk of thrombosis against the benefit provided by these devices. None. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                BMJ Support Palliat Care
                BMJ Support Palliat Care
                bmjspcare
                bmjspcare
                BMJ Supportive & Palliative Care
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2045-435X
                2045-4368
                December 2021
                19 August 2021
                : 11
                : 4
                : 371-380
                Affiliations
                [1 ] departmentDepartment of Basic and Clinical Oncology , University of Chile Faculty of Medicine , Santiago, 8380453, Chile
                [2 ] departmentSchool of Medicine , University of Chile , Santiago, 8380453, Chile
                [3 ] departmentNeurosciences , University of Texas Health , Houston, Texas, USA
                [4 ] departmentIntensive Care Department , Facultad de Medicina. Pontificia Universidad Catolica de Chile , Santiago, 8330077, Chile
                Author notes
                [Correspondence to ] Dr Max Andresen, Intensive Care Department, Facultad de Medicina. Pontificia Universidad Catolica de Chile, Santiago, Chile; andresen@ 123456med.puc.cl
                Author information
                http://orcid.org/0000-0001-6496-4093
                Article
                bmjspcare-2019-002106
                10.1136/bmjspcare-2019-002106
                8606430
                34413028
                1c914fa4-6823-4a2d-ba30-cea0afea9b11
                © Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See:  http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 15 November 2019
                : 07 April 2021
                Categories
                Review
                1506
                Custom metadata
                unlocked

                cancer,clinical decisions,clinical assessment,venous thromboembolism,drug administration

                Comments

                Comment on this article