2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Robust weakly supervised learning for COVID-19 recognition using multi-center CT images

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The world is currently experiencing an ongoing pandemic of an infectious disease named coronavirus disease 2019 (i.e., COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Computed Tomography (CT) plays an important role in assessing the severity of the infection and can also be used to identify those symptomatic and asymptomatic COVID-19 carriers. With a surge of the cumulative number of COVID-19 patients, radiologists are increasingly stressed to examine the CT scans manually. Therefore, an automated 3D CT scan recognition tool is highly in demand since the manual analysis is time-consuming for radiologists and their fatigue can cause possible misjudgment. However, due to various technical specifications of CT scanners located in different hospitals, the appearance of CT images can be significantly different leading to the failure of many automated image recognition approaches. The multi-domain shift problem for the multi-center and multi-scanner studies is therefore nontrivial that is also crucial for a dependable recognition and critical for reproducible and objective diagnosis and prognosis. In this paper, we proposed a COVID-19 CT scan recognition model namely coronavirus information fusion and diagnosis network (CIFD-Net) that can efficiently handle the multi-domain shift problem via a new robust weakly supervised learning paradigm. Our model can resolve the problem of different appearance in CT scan images reliably and efficiently while attaining higher accuracy compared to other state-of-the-art methods. 

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Automated detection of COVID-19 cases using deep neural networks with X-ray images

          The novel coronavirus 2019 (COVID-2019), which first appeared in Wuhan city of China in December 2019, spread rapidly around the world and became a pandemic. It has caused a devastating effect on both daily lives, public health, and the global economy. It is critical to detect the positive cases as early as possible so as to prevent the further spread of this epidemic and to quickly treat affected patients. The need for auxiliary diagnostic tools has increased as there are no accurate automated toolkits available. Recent findings obtained using radiology imaging techniques suggest that such images contain salient information about the COVID-19 virus. Application of advanced artificial intelligence (AI) techniques coupled with radiological imaging can be helpful for the accurate detection of this disease, and can also be assistive to overcome the problem of a lack of specialized physicians in remote villages. In this study, a new model for automatic COVID-19 detection using raw chest X-ray images is presented. The proposed model is developed to provide accurate diagnostics for binary classification (COVID vs. No-Findings) and multi-class classification (COVID vs. No-Findings vs. Pneumonia). Our model produced a classification accuracy of 98.08% for binary classes and 87.02% for multi-class cases. The DarkNet model was used in our study as a classifier for the you only look once (YOLO) real time object detection system. We implemented 17 convolutional layers and introduced different filtering on each layer. Our model (available at (https://github.com/muhammedtalo/COVID-19)) can be employed to assist radiologists in validating their initial screening, and can also be employed via cloud to immediately screen patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Artificial Intelligence Distinguishes COVID-19 from Community Acquired Pneumonia on Chest CT

            Background Coronavirus disease has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and accurate detection of COVID-19 using chest CT. Purpose To develop a fully automatic framework to detect COVID-19 using chest CT and evaluate its performances. Materials and Methods In this retrospective and multi-center study, a deep learning model, COVID-19 detection neural network (COVNet), was developed to extract visual features from volumetric chest CT exams for the detection of COVID-19. Community acquired pneumonia (CAP) and other non-pneumonia CT exams were included to test the robustness of the model. The datasets were collected from 6 hospitals between August 2016 and February 2020. Diagnostic performance was assessed by the area under the receiver operating characteristic curve (AUC), sensitivity and specificity. Results The collected dataset consisted of 4356 chest CT exams from 3,322 patients. The average age is 49±15 years and there were slightly more male patients than female (1838 vs 1484; p-value=0.29). The per-exam sensitivity and specificity for detecting COVID-19 in the independent test set was 114 of 127 (90% [95% CI: 83%, 94%]) and 294 of 307 (96% [95% CI: 93%, 98%]), respectively, with an AUC of 0.96 (p-value<0.001). The per-exam sensitivity and specificity for detecting CAP in the independent test set was 87% (152 of 175) and 92% (239 of 259), respectively, with an AUC of 0.95 (95% CI: 0.93, 0.97). Conclusions A deep learning model can accurately detect COVID-19 and differentiate it from community acquired pneumonia and other lung diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks

              In this study, a dataset of X-ray images from patients with common bacterial pneumonia, confirmed Covid-19 disease, and normal incidents, was utilized for the automatic detection of the Coronavirus disease. The aim of the study is to evaluate the performance of state-of-the-art convolutional neural network architectures proposed over the recent years for medical image classification. Specifically, the procedure called Transfer Learning was adopted. With transfer learning, the detection of various abnormalities in small medical image datasets is an achievable target, often yielding remarkable results. The datasets utilized in this experiment are two. Firstly, a collection of 1427 X-ray images including 224 images with confirmed Covid-19 disease, 700 images with confirmed common bacterial pneumonia, and 504 images of normal conditions. Secondly, a dataset including 224 images with confirmed Covid-19 disease, 714 images with confirmed bacterial and viral pneumonia, and 504 images of normal conditions. The data was collected from the available X-ray images on public medical repositories. The results suggest that Deep Learning with X-ray imaging may extract significant biomarkers related to the Covid-19 disease, while the best accuracy, sensitivity, and specificity obtained is 96.78%, 98.66%, and 96.46% respectively. Since by now, all diagnostic tests show failure rates such as to raise concerns, the probability of incorporating X-rays into the diagnosis of the disease could be assessed by the medical community, based on the findings, while more research to evaluate the X-ray approach from different aspects may be conducted.
                Bookmark

                Author and article information

                Journal
                Appl Soft Comput
                Appl Soft Comput
                Applied Soft Computing
                The Author(s). Published by Elsevier B.V.
                1568-4946
                1872-9681
                13 December 2021
                13 December 2021
                : 108291
                Affiliations
                [a ]Hangzhou Ocean’s Smart Boya Co., Ltd, China
                [b ]University of California, San Diego, La Jolla, CA, USA
                [c ]Institute of Biomedical Engineering, University of Oxford, UK
                [d ]Aladdin Healthcare Technologies Ltd, UK
                [e ]Nantong University, Nantong 226019, China
                [f ]BHF Center for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
                [g ]Mind Rank Ltd, China
                [h ]Department of Clinical Molecular Biology, University of Oslo, Norway
                [i ]Radiology Department, Shenzhen Second People’s Hospital, Shenzhen, China
                [j ]Royal Brompton Hospital, London, UK
                [k ]National Heart and Lung Institute, Imperial College London, London, UK
                Author notes
                [* ]Corresponding author.
                [** ]Corresponding author at: National Heart and Lung Institute, Imperial College London, London, UK.
                [1]

                These authors contributed equally to this work.

                Article
                S1568-4946(21)01096-6 108291
                10.1016/j.asoc.2021.108291
                8667427
                34934410
                1cb502a4-5a23-451f-b35d-91de6b08847d
                © 2021 The Author(s)

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 28 January 2021
                : 18 October 2021
                : 6 December 2021
                Categories
                Article

                Applied computer science
                multicenter data processing,multi-domain shift,weakly supervised learning,covid-19,medical image analysis

                Comments

                Comment on this article