Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      BRIDGES, Breast Cancer Risk after Diagnostic Gene Sequencing, HORIZON202

      Impact

      Science Impact, Ltd.

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Breast cancer affects more than 360,000 women per year in the EU and causes more than 90,000 deaths. Identification of women at high risk of the disease can lead to disease prevention through intensive screening, chemoprevention or prophylactic surgery. Breast cancer risk is determined by a combination of genetic and lifestyle risk factors. The advent of next generation sequencing has opened up the opportunity for testing in many disease genes, and diagnostic gene panel testing is being introduced in many EU countries. However, the cancer risks associated with most variants in most genes are unknown. This leads to a major problem in appropriate counselling and management of women undergoing panel testing.In this project, we aim to build a knowledge base that will allow identification of women at high-risk of breast cancer, in particular through comprehensive evaluation of DNA variants in known and suspected breast cancer genes. We will exploit the huge resources established through the Breast Cancer Association Consortium (BCAC) and ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles). We will expand the existing datasets by sequencing all known breast cancer susceptibility genes in 20,000 breast cancer cases and 20,000 controls from population-based studies, and 10,000 cases from multiple case families. Sequence data will be integrated with in-silico and functional data, with data on other known risk factors, to generate a comprehensive risk model that can provide personalised risk estimates. We will develop online tools to aid the interpretation of gene variants and provide risk estimates in a user-friendly format, to help genetic counsellors and patients worldwide to make informed clinical decisions. We will evaluate the acceptability and utility of comprehensive gene panel testing in the clinical genetics context.

          Related collections

          Author and article information

          Journal
          Impact
          impact
          Science Impact, Ltd.
          2398-7073
          March 29 2018
          March 29 2018
          : 2018
          : 2
          : 9-11
          Article
          10.21820/23987073.2018.2.9
          © 2018

          This work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

          Earth & Environmental sciences, Medicine, Computer science, Agriculture, Engineering

          Comments

          Comment on this article