Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intestinal Tissues Induce an SNP Mutation in Pseudomonas aeruginosa That Enhances Its Virulence: Possible Role in Anastomotic Leak

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The most feared complication following intestinal resection is anastomotic leakage. In high risk areas (esophagus/rectum) where neoadjuvant chemoradiation is used, the incidence of anastomotic leaks remains unacceptably high (∼10%) even when performed by specialist surgeons in high volume centers. The aims of this study were to test the hypothesis that anastomotic leakage develops when pathogens colonizing anastomotic sites become in vivo transformed to express a tissue destroying phenotype. We developed a novel model of anastomotic leak in which rats were exposed to pre-operative radiation as in cancer surgery, underwent distal colon resection and then were intestinally inoculated with Pseudomonas aeruginosa, a common colonizer of the radiated intestine. Results demonstrated that intestinal tissues exposed to preoperative radiation developed a significant incidence of anastomotic leak (>60%; p<0.01) when colonized by P. aeruginosa compared to radiated tissues alone (0%). Phenotype analysis comparing the original inoculating strain (MPAO1- termed P1) and the strain retrieved from leaking anastomotic tissues (termed P2) demonstrated that P2 was altered in pyocyanin production and displayed enhanced collagenase activity, high swarming motility, and a destructive phenotype against cultured intestinal epithelial cells (i.e. apoptosis, barrier function, cytolysis). Comparative genotype analysis between P1 and P2 revealed a single nucleotide polymorphism (SNP) mutation in the mexT gene that led to a stop codon resulting in a non-functional truncated protein. Replacement of the mutated mexT gene in P2 with mexT from the original parental strain P1 led to reversion of P2 to the P1 phenotype. No spontaneous transformation was detected during 20 passages in TSB media. Use of a novel virulence suppressing compound PEG/Pi prevented P. aeruginosa transformation to the tissue destructive phenotype and prevented anastomotic leak in rats. This work demonstrates that in vivo transformation of microbial pathogens to a tissue destroying phenotype may have important implications in the pathogenesis of anastomotic leak.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Recognition of host immune activation by Pseudomonas aeruginosa.

          It is generally reasoned that lethal infections caused by opportunistic pathogens develop permissively by invading a host that is both physiologically stressed and immunologically compromised. However, an alternative hypothesis might be that opportunistic pathogens actively sense alterations in host immune function and respond by enhancing their virulence phenotype. We demonstrate that interferon-gamma binds to an outer membrane protein in Pseudomonas aeruginosa, OprF, resulting in the expression of a quorum-sensing dependent virulence determinant, the PA-I lectin. These observations provide details of the mechanisms by which prokaryotic organisms are directly signaled by immune activation in their eukaryotic host.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1.

            During host injury, Pseudomonas aeruginosa can be cued to express a lethal phenotype within the intestinal tract reservoir-a hostile, nutrient scarce environment depleted of inorganic phosphate. Here we determined if phosphate depletion activates a lethal phenotype in P. aeruginosa during intestinal colonization. To test this, we allowed Caenorhabditis elegans to feed on lawns of P. aeruginosa PAO1 grown on high and low phosphate media. Phosphate depletion caused PAO1 to kill 60% of nematodes whereas no worms died on high phosphate media. Unexpectedly, intense redness was observed in digestive tubes of worms before death. Using a combination of transcriptome analyses, mutants, and reporter constructs, we identified 3 global virulence systems that were involved in the "red death" response of P. aeruginosa during phosphate depletion; they included phosphate signaling (PhoB), the MvfR-PQS pathway of quorum sensing, and the pyoverdin iron acquisition system. Activation of all 3 systems was required to form a red colored PQS+Fe(3+) complex which conferred a lethal phenotype in this model. When pyoverdin production was inhibited in P. aeruginosa by providing excess iron, red death was attenuated in C. elegans and mortality was decreased in mice intestinally inoculated with P. aeruginosa. Introduction of the red colored PQS+Fe(3+) complex into the digestive tube of C. elegans or mouse intestine caused mortality associated with epithelial disruption and apoptosis. In summary, red death in C. elegans reveals a triangulated response between PhoB, MvfR-PQS, and pyoverdin in response to phosphate depletion that activates a lethal phenotype in P. aeruginosa.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa.

              Intrinsic and acquired antibiotic resistance of the nosocomial pathogen Pseudomonas aeruginosa is mediated mainly by the expression of several efflux pumps of broad substrate specificity. Here we report that nfxC type mutants, overexpressing the MexEF-OprN efflux system, produce lower levels of extracellular virulence factors than the susceptible wild type. These include pyocyanin, elastase, and rhamnolipids, three factors controlled by the las and rhl quorum-sensing systems of P. aeruginosa. In agreement with these observations are the decreased transcription of the elastase gene lasB and the rhamnosyltransferase genes rhlAB measured in nfxC type mutants. Expression of the lasR and rhlR regulator genes was not affected in the nfxC type mutant. In contrast, transcription of the C4-homoserine lactone (C4-HSL) autoinducer synthase gene rhlI was reduced by 50% in the nfxC type mutant relative to that in the wild type. This correlates with a similar decrease in C4-HSL levels detected in supernatants of the nfxC type mutant. Transcription of an rhlAB-lacZ fusion could be partially restored by the addition of synthetic C4-HSL and Pseudomonas quinolone signal (PQS). It is proposed that the MexEF-OprN efflux pump affects intracellular PQS levels.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                31 August 2012
                : 7
                : 8
                : e44326
                Affiliations
                [1 ]Department of Surgery, University of Chicago, Illinois, United States of America
                [2 ]Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
                [3 ]Institute for Genomic and Systems Biology, Argonne National Laboratory, Argonne, Illinois, United States of America
                [4 ]Bioengineering Institute for Advanced Surgery and Endoscopy, Chicago, Illinois, United States of America
                The Scripps Research Institute and Sorrento Therapeutics, Inc., United States of America
                Author notes

                Competing Interests: JCA is co-founder of Midway Pharmaceuticals which develops high molecular weight polyethylene glycol polymers as epithelial cytoprotectants. JG is a PLoS ONE Editorial Board member. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials.

                Conceived and designed the experiments: GA OZ JCA. Performed the experiments: ADO BDS VV AZ NB MM FM WLT JG OZ. Analyzed the data: AOD BDS VV AZ NB MM FM WLT GA JG OZ JCA. Contributed reagents/materials/analysis tools: MM. Wrote the paper: GA OZ JCA.

                Article
                PONE-D-12-16313
                10.1371/journal.pone.0044326
                3432121
                22952955
                1dc194e0-a8cc-4fae-87db-2366f2acbae0
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 June 2012
                : 1 August 2012
                Page count
                Pages: 11
                Funding
                Funding provided by National Institute of Health (RO1-GM062344-12), Digestive Disease Research Core Center of the University of Chicago (DK42086) and the United States Department of Energy under Contract DE-AC02-06CH11357. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Microbiology
                Bacterial Pathogens
                Host-Pathogen Interaction
                Medical Microbiology
                Microbial Evolution
                Microbial Mutation
                Model Organisms
                Animal Models
                Medicine
                Gastroenterology and Hepatology
                Gastrointestinal Infections
                Radiology
                Surgery
                Gastrointestinal Surgery

                Uncategorized
                Uncategorized

                Comments

                Comment on this article