42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Activation of HIV-1 from Latent Infection via Synergy of RUNX1 Inhibitor Ro5-3335 and SAHA

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A major barrier to the elimination of HIV-1 infection is the presence of a pool of long-lived, latently infected CD4+ memory T-cells. The search for treatments to re-activate latent HIV to aid in clearance is hindered by the incomplete understanding of the mechanisms that lead to transcriptional silencing of viral gene expression in host cells. Here we identify a previously unknown role for RUNX1 in HIV-1 transcriptional latency. The RUNX proteins, in combination with the co-factor CBF-β, are critical transcriptional regulators in T-cells. RUNX1 strongly modulates CD4 expression and contributes to CD4+ T-cell function. We show that RUNX1 can bind DNA sequences within the HIV-1 LTR and that this binding represses transcription. Using patient samples we show a negative correlation between RUNX1 expression and viral load. Furthermore, we find that pharmacologic inhibition of RUNX1 by a small molecule inhibitor, Ro5-3335, synergizes with the histone deacetylase (HDAC) inhibitor SAHA (Vorinostat) to enhance the activation of latent HIV-1 in both cell lines and PBMCs from patients. Our findings indicate that RUNX1 and CBF-β cooperate in cells to modulate HIV-1 replication, identifying for the first time RUNX1 as a cellular factor involved in HIV-1 latency. This work highlights the therapeutic potential of inhibitors of RUNX1 to re-activate virus and aid in clearance of HIV-1.

          Author Summary

          Since it was first discovered in the early 1980s, Human Immunodeficiency Virus 1 (HIV-1), the causative agent of Acquired Immunodeficiency Syndrome (AIDS), has been the focus of intense research. In untreated individuals, the number of CD4+ T-cells in the blood slowly drops over time and the patient eventually succumbs to an opportunistic infection. Although current therapies are capable of managing the virus; they do not represent a true cure. As a retrovirus, HIV-1 incorporates itself into the host genome and survives in the long-lived population of memory T-cells found in the human host. In this study, we examine the roll of a T-cell specific transcription factor (RUNX1) in the control of HIV-1 replication. Through various molecular studies, we show that RUNX1 represses HIV-1 replication in T-cells. By examining samples from patients with HIV-1, we are able to show a negative correlation between viral replication and RUNX1 expression. Finally, we show that an inhibitor of RUNX1 synergizes with Vorinostat, a current lead compound in the quest to re-active HIV-1 and purge the latent pool.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          HIV reproducibly establishes a latent infection after acute infection of T cells in vitro.

          The presence of latent reservoirs has prevented the eradication of human immunodeficiency virus (HIV) from infected patients successfully treated with anti-retroviral therapy. The mechanism of postintegration latency is poorly understood, partly because of the lack of an in vitro model. We have used an HIV retroviral vector or a full-length HIV genome expressing green fluorescent protein to infect a T lymphocyte cell line in vitro and highly enrich for latently infected cells. HIV latency occurred reproducibly, albeit with low frequency, during an acute infection. Clonal cell lines derived from latent populations showed no detectable basal expression, but could be transcriptionally activated after treatment with phorbol esters or tumor necrosis factor alpha. Direct sequencing of integration sites demonstrated that latent clones frequently contain HIV integrated in or close to alphoid repeat elements in heterochromatin. This is in contrast to a productive infection where integration in or near heterochromatin is disfavored. These observations demonstrate that HIV can reproducibly establish a latent infection as a consequence of integration in or near heterochromatin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation.

            Highly active antiretroviral therapy (HAART) suppresses HIV-1 replication but cannot eliminate the virus because HIV-1 establishes latent infection. Interruption of HAART leads to a rapid rebound of viremia, so life-long treatment is required. Efforts to purge the latent reservoir have focused on reactivating latent proviruses without inducing global T cell activation. However, the killing of the infected cells after virus reactivation, which is essential for elimination of the reservoir, has not been assessed. Here we show that after reversal of latency in an in vitro model, infected resting CD4(+) T cells survived despite viral cytopathic effects, even in the presence of autologous cytolytic T lymphocytes (CTLs) from most patients on HAART. Antigen-specific stimulation of patient CTLs led to efficient killing of infected cells. These results demonstrate that stimulating HIV-1-specific CTLs prior to reactivating latent HIV-1 may be essential for successful eradication efforts and should be considered in future clinical trials. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development.

              T lymphocytes differentiate in discrete stages within the thymus. Immature thymocytes lacking CD4 and CD8 coreceptors differentiate into double-positive cells (CD4(+)CD8(+)), which are selected to become either CD4(+)CD8(-)helper cells or CD4(-)CD8(+) cytotoxic cells. A stage-specific transcriptional silencer regulates expression of CD4 in both immature and CD4(-)CD8(+) thymocytes. We show here that binding sites for Runt domain transcription factors are essential for CD4 silencer function at both stages, and that different Runx family members are required to fulfill unique functions at each stage. Runx1 is required for active repression in CD4(-)CD8(-) thymocytes whereas Runx3 is required for establishing epigenetic silencing in cytotoxic lineage thymocytes. Runx3-deficient cytotoxic T cells, but not helper cells, have defective responses to antigen, suggesting that Runx proteins have critical functions in lineage specification and homeostasis of CD8-lineage T lymphocytes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                March 2014
                20 March 2014
                : 10
                : 3
                : e1003997
                Affiliations
                [1 ]Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
                [2 ]Host Virus Interaction Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
                [3 ]Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
                University of Massachusetts Medical School, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ZK KTJ. Performed the experiments: ZK VSRKY MP JB. Analyzed the data: LH MP JB PL KS. Contributed reagents/materials/analysis tools: FM KS. Wrote the paper: ZK VSRKY KTJ.

                Article
                PPATHOGENS-D-13-02145
                10.1371/journal.ppat.1003997
                3961356
                24651404
                1ded5f39-fa3b-48da-b22f-af67f84961a6
                Copyright @ 2014

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 13 August 2013
                : 29 January 2014
                Page count
                Pages: 12
                Funding
                This work was supported by the intramural research programs of National Institute of Allergy and Infectious Diseases and National Human Genome Research Institute, NIH, and by the Intramural AIDS Targeted Antiviral Program from the Office of the Director, NIH. ZK was supported by a fellowship from the Office of AIDS Research, NIH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Immunology
                Immune Cells
                T Cells
                Microbiology
                Virology
                Immunodeficiency Viruses
                Molecular cell biology
                Gene expression
                DNA transcription

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article