0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of exosome release and extracellular vesicle-associated miRNAs for human bronchial epithelial cells irradiated with high charge and energy ions.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exosomes are extracellular vesicles that mediate transport of nucleic acids, proteins, and other molecules. Prior work has implicated exosomes in the transmission of radiation nontargeted effects. Here we investigate the ability of energetic heavy ions, representative of species found in galactic cosmic rays, to stimulate exosome release from human bronchial epithelial cells in vitro. Immortalized human bronchial epithelial cells (HBEC3-KT F25F) were irradiated with 1.0 Gy of high linear energy transfer (LET) 48Ti, 28Si, or 16O ions, or with 10 Gy of low-LET reference γ-rays, and extracellular vesicles were collected from conditioned media. Preparations were characterized by single particle tracking analysis, transmission electron microscopy, and immunoblotting for the exosomal marker, TSG101. Based on TSG101 levels, irradiation with high-LET ions, but not γ-rays, stimulated exosome release by about 4-fold, relative to mock-irradiated controls. The exosome-enriched vesicle preparations contained pro-inflammatory damage-associated molecular patterns, including HSP70 and calreticulin. Additionally, miRNA profiling was performed for vesicular RNAs using NanoString technology. The miRNA profile was skewed toward a small number of species that have previously been shown to be involved in cancer initiation and progression, including miR-1246, miR-1290, miR-23a, and miR-205. Additionally, a set of 24 miRNAs was defined as modestly over-represented in preparations from HZE ion-irradiated versus other cells. Gene set enrichment analysis based on the over-represented miRNAs showed highly significant association with nonsmall cell lung and other cancers.

          Related collections

          Author and article information

          Journal
          Life Sci Space Res (Amst)
          Life sciences in space research
          Elsevier BV
          2214-5532
          2214-5524
          Feb 2021
          : 28
          Affiliations
          [1 ] Department of Radiation Oncology, Emory University School of Medicine, Emory University, Atlanta, GA, United States.
          [2 ] Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, United States; Department of Biomedical Informatics, Emory University School of Medicine, Emory University, Atlanta, GA, United States.
          [3 ] Department of Radiation Oncology, Emory University School of Medicine, Emory University, Atlanta, GA, United States; Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, United States. Electronic address: wdynan@emory.edu.
          Article
          S2214-5524(20)30084-5
          10.1016/j.lssr.2020.11.001
          33612174
          1df32047-f972-46a1-b23f-ac75b4ab13cc
          History

          Exosomes,Bronchial epithelial cells,miRNA,High linear energy transfer radiation

          Comments

          Comment on this article